Abstract

Surface-enhanced nonlinear vibrational spectroscopy using periodic gold nanoantenna arrays is demonstrated. The dipolar coupling among arrayed nanoantennas is shown to have striking impact on near-field enhancements of femtosecond pulsed-fields and on nonlinear signal enhancements. The condition near the collective-resonance achieves averaged signal enhancement of 850 times and local signal enhancement of 1.8 × 106 times, substantially reducing the required pump energy from micro-joule to nano-joule level. The scheme is useful for characterizing structure and dynamics of minute-volume molecular samples, monolayers, and interfaces, as well as paves the way to nonlinear vibrational spectroscopy with compact light sources of oscillator-level.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes

Daniel Weber, Pablo Albella, Pablo Alonso-González, Frank Neubrech, Han Gui, Tadaaki Nagao, Rainer Hillenbrand, Javier Aizpurua, and Annemarie Pucci
Opt. Express 19(16) 15047-15061 (2011)

Waveguide-integrated mid-infrared plasmonics with high-efficiency coupling for ultracompact surface-enhanced infrared absorption spectroscopy

Daniel A. Mohr, Daehan Yoo, Che Chen, Mo Li, and Sang-Hyun Oh
Opt. Express 26(18) 23540-23549 (2018)

Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky
Opt. Express 20(25) 27725-27739 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy (Cambridge University Press, 2011).
  2. E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104(4), 1887–1914 (2004).
    [Crossref] [PubMed]
  3. A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
    [Crossref]
  4. M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95(24), 9914–9919 (1991).
    [Crossref]
  5. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  6. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  7. P. M. Donaldson and P. Hamm, “Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy,” Angew. Chem. Int. Ed. Engl. 52(2), 634–638 (2013).
    [Crossref] [PubMed]
  8. F. Kusa and S. Ashihara, “Spectral response of localized surface plasmon in resonance with mid-infrared light,” J. Appl. Phys. 116(15), 153103 (2014).
    [Crossref]
  9. F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
    [Crossref]
  10. O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
    [Crossref] [PubMed]
  11. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  12. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
    [Crossref] [PubMed]
  13. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
    [Crossref] [PubMed]
  14. V. Liberman, R. Adato, T. H. Jeys, B. G. Saar, S. Erramilli, and H. Altug, “Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 20(11), 11953–11967 (2012).
    [Crossref] [PubMed]
  15. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
    [Crossref]
  16. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [Crossref]
  17. Y. L. Rezus and O. Selig, “Impact of local-field effects on the plasmonic enhancement of vibrational signals by infrared nanoantennas,” Opt. Express 24(11), 12202–12227 (2016).
    [Crossref] [PubMed]
  18. B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
    [Crossref]
  19. M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
    [Crossref]
  20. S. Ashihara, K. Shibuya, and S. Fujioka, “Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O,” Chem. Phys. Lett. 502(1–3), 57–62 (2011).
    [Crossref]
  21. X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
    [Crossref]
  22. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
    [Crossref] [PubMed]
  23. I. Morichika, F. Kusa, A. Takegami, A. Sakurai, and S. Ashihara, “Antenna-enhanced nonlinear infrared spectroscopy in reflection geometry,” J. Phys. Chem. C (to be published) (2017).
    [Crossref]

2016 (1)

2015 (4)

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
[Crossref] [PubMed]

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

2014 (2)

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Kusa and S. Ashihara, “Spectral response of localized surface plasmon in resonance with mid-infrared light,” J. Appl. Phys. 116(15), 153103 (2014).
[Crossref]

2013 (1)

P. M. Donaldson and P. Hamm, “Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy,” Angew. Chem. Int. Ed. Engl. 52(2), 634–638 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2010 (1)

2009 (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

2008 (2)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

2006 (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

2005 (1)

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

2004 (1)

E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104(4), 1887–1914 (2004).
[Crossref] [PubMed]

1991 (1)

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95(24), 9914–9919 (1991).
[Crossref]

1981 (1)

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

1980 (1)

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
[Crossref]

Adato, R.

Aizpurua, J.

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Albella, P.

Alonso-González, P.

Altug, H.

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ashihara, S.

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

F. Kusa and S. Ashihara, “Spectral response of localized surface plasmon in resonance with mid-infrared light,” J. Appl. Phys. 116(15), 153103 (2014).
[Crossref]

S. Ashihara, K. Shibuya, and S. Fujioka, “Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O,” Chem. Phys. Lett. 502(1–3), 57–62 (2011).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Banno, M.

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

Barber, P. W.

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Beck, S.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Chang, R. K.

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Donaldson, P. M.

P. M. Donaldson and P. Hamm, “Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy,” Angew. Chem. Int. Ed. Engl. 52(2), 634–638 (2013).
[Crossref] [PubMed]

Echternkamp, K. E.

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

Elsaesser, T.

E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104(4), 1887–1914 (2004).
[Crossref] [PubMed]

Erramilli, S.

V. Liberman, R. Adato, T. H. Jeys, B. G. Saar, S. Erramilli, and H. Altug, “Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 20(11), 11953–11967 (2012).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Fujioka, S.

S. Ashihara, K. Shibuya, and S. Fujioka, “Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O,” Chem. Phys. Lett. 502(1–3), 57–62 (2011).
[Crossref]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Giessen, H.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Gissibl, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Glaser, T.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Gui, H.

Guillet, Y.

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Hamaguchi, H.

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

Hamm, P.

P. M. Donaldson and P. Hamm, “Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy,” Angew. Chem. Int. Ed. Engl. 52(2), 634–638 (2013).
[Crossref] [PubMed]

Hartstein, A.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
[Crossref]

Hentschel, M.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Herink, G.

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

Hillenbrand, R.

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ikeda, M.

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95(24), 9914–9919 (1991).
[Crossref]

Iwata, K.

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

Jeys, T. H.

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kirtley, J. R.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
[Crossref]

Kusa, F.

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

F. Kusa and S. Ashihara, “Spectral response of localized surface plasmon in resonance with mid-infrared light,” J. Appl. Phys. 116(15), 153103 (2014).
[Crossref]

Liberman, V.

Messinger, B. J.

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Nagao, T.

Neubrech, F.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Nibbering, E. T. J.

E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104(4), 1887–1914 (2004).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Osawa, M.

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95(24), 9914–9919 (1991).
[Crossref]

Palpant, B.

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Pucci, A.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19(16), 15047–15061 (2011).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Remita, H.

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Rezus, Y. L.

Rezus, Y. L. A.

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
[Crossref] [PubMed]

Ropers, C.

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

Saar, B. G.

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Sato, S.

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

Selig, O.

Y. L. Rezus and O. Selig, “Impact of local-field effects on the plasmonic enhancement of vibrational signals by infrared nanoantennas,” Opt. Express 24(11), 12202–12227 (2016).
[Crossref] [PubMed]

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
[Crossref] [PubMed]

Selvakannan, P. R.

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Shibuya, K.

S. Ashihara, K. Shibuya, and S. Fujioka, “Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O,” Chem. Phys. Lett. 502(1–3), 57–62 (2011).
[Crossref]

Shvets, G.

Siffels, R.

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
[Crossref] [PubMed]

Tsang, J. C.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
[Crossref]

Vonraben, K. U.

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Wang, X. L.

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Weber, D.

Weber, K.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

Wu, C.-H.

Yanik, A. A.

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

ACS Nano (1)

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]

AIP Adv. (1)

F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, “Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses,” AIP Adv. 5(7), 077138 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

P. M. Donaldson and P. Hamm, “Gold nanoparticle capping layers: structure, dynamics, and surface enhancement measured using 2D-IR spectroscopy,” Angew. Chem. Int. Ed. Engl. 52(2), 634–638 (2013).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

M. Banno, S. Sato, K. Iwata, and H. Hamaguchi, “Solvent-dependent intra- and intermolecular vibrational energy transfer of W(CO)6 probed with sub-picosecond time-resolved infrared spectroscopy,” Chem. Phys. Lett. 412(4–6), 464–469 (2005).
[Crossref]

S. Ashihara, K. Shibuya, and S. Fujioka, “Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O,” Chem. Phys. Lett. 502(1–3), 57–62 (2011).
[Crossref]

Chem. Rev. (1)

E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104(4), 1887–1914 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Kusa and S. Ashihara, “Spectral response of localized surface plasmon in resonance with mid-infrared light,” J. Appl. Phys. 116(15), 153103 (2014).
[Crossref]

J. Phys. Chem. (1)

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95(24), 9914–9919 (1991).
[Crossref]

J. Phys. Chem. C (1)

X. L. Wang, Y. Guillet, P. R. Selvakannan, H. Remita, and B. Palpant, “Broadband spectral signature of the ultrafast transient optical response of gold nanorods,” J. Phys. Chem. C 119(13), 7416–7427 (2015).
[Crossref]

Opt. Express (4)

Phys. Rev. B (1)

B. J. Messinger, K. U. Vonraben, R. K. Chang, and P. W. Barber, “Local fields at at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Phys. Rev. Lett. (4)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45(3), 201–204 (1980).
[Crossref]

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114(23), 233004 (2015).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Other (2)

I. Morichika, F. Kusa, A. Takegami, A. Sakurai, and S. Ashihara, “Antenna-enhanced nonlinear infrared spectroscopy in reflection geometry,” J. Phys. Chem. C (to be published) (2017).
[Crossref]

P. Hamm and M. Zanni, Concepts and methods of 2D infrared spectroscopy (Cambridge University Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Local field enhancement factor of gold nanorod arrays for varied dy. The ‘crests’ are observed at dy’s slightly smaller than the critical period dc, which is multiples of the optical wavelength in the substrate. (b) Field enhancement spectra for dy = 1.0, 2.6, 3.2 μm and infinity (isolated).
Fig. 2
Fig. 2 Temporal waveforms of the incident electric-field of 100-fs duration, enhanced near-fields for the isolated nanorod and for nanorod arrays of dy = 3.2 μm.
Fig. 3
Fig. 3 SEM images of (a) the closely-arranged structure and (b) the collective-resonance structure. The arrangement period along x-axis /y-axis is dx ~2.2 μm/dy ~1.0 μm for the former and dx ~1.9 μm/dy ~3.3 μm for the latter.
Fig. 4
Fig. 4 (a) Extinction spectra for the closely-arranged nanorod arrays on a CaF2 substrate with and without 180-nm-thick W(CO)6:PMMA film are displayed as a dotted line and a solid line, respectively (the lower panel). The upper panel is for the same film deposited directly on a CaF2 substrate. (b) Extinction spectra for the nanorod arrays of collective resonance on a CaF2 substrate with and without the 80-nm-thick W(CO)6:PMMA film are displayed as a dotted line and a solid line, respectively (the lower panel). The upper panel is for the same film deposited directly on a CaF2 substrate.
Fig. 5
Fig. 5 Linear and nonlinear extinction spectra for (a-c) the W(CO)6:PMMA film on the closely-arranged nanorod arrays (the sample thickness of 180 nm and the pump energy of 50 nJ), for (d-f) the W(CO)6:PMMA film on the collective-resonance nanorod arrays (the sample thickness of 80 nm and the pump energy of 10 nJ), and for (g-i) the W(CO)6:PMMA film directly deposited on a CaF2 substrate (the sample thickness of 180 nm and the pump energy of 890 nJ). (a,d,g) Linear extinction spectra, (b,e,h) pump-probe extinction changes at varied delay times, (c,f,i) pump-probe extinction changes plotted against the probe frequency and the delay time. The scale-bars show the extinction changes in mOD.
Fig. 6
Fig. 6 The kinetic data for the probe frequencies of v = 01 (circles) and 10 (squares) transitions and the corresponding fitted curves (dashed lines) are shown for (a) the sample on closely-arranged nanorod arrays, for (b) the sample on collective-resonance nanorod arrays, and (c) the sample directly deposited on a CaF2 substrate.
Fig. 7
Fig. 7 The pump-probe extinction changes at 0 ps for the sample on the closely-arranged structure, when the pump polarization is parallel or perpendicular to the nanorods. The probe polarization is kept parallel to the nanorods in both cases.

Tables (1)

Tables Icon

Table 1 Parameters of the pump-probe experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A μ 2 E 2 /3 L 2 ,
S μ 4 E 4 /5 L 4 ,

Metrics