Abstract

The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm−2 while the temperature resolution is 1.301 °C at the end of fiber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode fiber based Raman distributed temperature sensing

Meng Wang, Hao Wu, Ming Tang, Zhiyong Zhao, Yunli Dang, Can Zhao, Ruolin Liao, Wen Chen, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(5) 4907-4916 (2017)

Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber

Zhiyong Zhao, Yunli Dang, Ming Tang, Li Duan, Meng Wang, Hao Wu, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 24(22) 25111-25118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
    [Crossref] [PubMed]
  2. L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol. 28(18), 2681–2687 (2010).
    [Crossref]
  3. P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
    [Crossref] [PubMed]
  4. W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031 (2015).
    [Crossref] [PubMed]
  5. Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
    [Crossref] [PubMed]
  6. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  7. Q. Huang, Y. Yu, X. Li, X. Chen, Y. Zhang, W. Zhou, and C. Du, “Micro-bending vector sensor based on six-air-hole grapefruit microstructure fiber using lateral offset splicing,” Opt. Express 23(3), 3010–3019 (2015).
    [Crossref] [PubMed]
  8. J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett. 40(13), 3113–3116 (2015).
    [Crossref] [PubMed]
  9. H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
    [Crossref] [PubMed]
  10. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
    [Crossref] [PubMed]
  11. A. Minardo, R. Bernini, and L. Zeni, “Bend-induced brillouin frequency shift variation in a single-mode fiber,” IEEE Photonics Technol. Lett. 25(23), 2362–2364 (2013).
    [Crossref]
  12. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  13. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
    [Crossref]
  14. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
    [Crossref]
  15. H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25(10), 695–697 (2000).
    [Crossref] [PubMed]
  16. S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
    [Crossref]
  17. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
    [Crossref] [PubMed]
  18. K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
    [Crossref]
  19. A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  20. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  21. Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42(1), 171–174 (2017).
    [Crossref] [PubMed]
  22. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
    [Crossref] [PubMed]
  23. M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
    [Crossref] [PubMed]
  24. G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
    [Crossref]
  25. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [Crossref] [PubMed]
  26. M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
    [Crossref]
  27. M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
    [Crossref] [PubMed]
  28. Q. Sui, H. Zhang, J. D. Downie, W. A. Wood, J. Hurley, S. Mishra, A. P. T. Lau, C. Lu, H. Y. Tam, and P. K. A. Wai, “Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference,” Opt. Express 23(3), 3156–3169 (2015).
    [Crossref] [PubMed]
  29. M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
    [Crossref]
  30. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
    [Crossref] [PubMed]
  31. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  32. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
    [Crossref]
  33. A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27(2), 86–88 (2002).
    [Crossref] [PubMed]
  34. M. B. Shemirani, W. Mao, R. A. Panicker, and J. Kahn, “Principal Modes in Graded-Index Multimode Fiber in Presence of Spatial- and Polarization-Mode Coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009).
    [Crossref]
  35. A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
    [Crossref] [PubMed]
  36. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975).
    [Crossref] [PubMed]
  37. J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [Crossref]
  38. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
    [Crossref]
  39. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [Crossref] [PubMed]
  40. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  41. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  42. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]

2017 (2)

2016 (5)

2015 (8)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Q. Huang, Y. Yu, X. Li, X. Chen, Y. Zhang, W. Zhou, and C. Du, “Micro-bending vector sensor based on six-air-hole grapefruit microstructure fiber using lateral offset splicing,” Opt. Express 23(3), 3010–3019 (2015).
[Crossref] [PubMed]

Q. Sui, H. Zhang, J. D. Downie, W. A. Wood, J. Hurley, S. Mishra, A. P. T. Lau, C. Lu, H. Y. Tam, and P. K. A. Wai, “Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference,” Opt. Express 23(3), 3156–3169 (2015).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031 (2015).
[Crossref] [PubMed]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett. 40(13), 3113–3116 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (3)

2012 (2)

2010 (4)

2009 (3)

2005 (1)

2002 (1)

2001 (2)

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

2000 (1)

1997 (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

1995 (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

1985 (1)

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

1978 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

1975 (1)

Adebayo, A.

Alahbabi, M. N.

Albert, J.

Alcon-Camas, M.

Allsop, T.

Amezcua Correa, R.

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Antonio-Lopez, J. E.

Arya, R.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Auguste, J. L.

Bai, Z.

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Baxter, G.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced brillouin frequency shift variation in a single-mode fiber,” IEEE Photonics Technol. Lett. 25(23), 2362–2364 (2013).
[Crossref]

Bibby, G.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Blondy, J. M.

Bolognini, G.

Brambilla, G.

Che, D.

Chen, C.

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Chen, T.

Chen, W.

Chen, X.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Chin, S. H.

Cho, Y. T.

Corredera, P.

Cui, W.

Dakin, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Dang, Y.

Di Pasquale, F.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Dinh, X. Q.

Donoho, D. L.

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

Downie, J. D.

Dragomir, N.

Du, C.

Duan, L.

Fang, J.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Farrell, P.

Fu, S.

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Gan, L.

Gao, S.

Geng, P.

Gérome, F.

Gonzalez-Herraez, M.

Guzik, A.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Haynes, R.

Hou, X.

Hu, Q.

Huang, Q.

Huang, T.

Humbert, G.

Hurley, J.

Ip, E.

Jeong, Y.

Jung, Y.

Kahn, J.

Kee, H. H.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25(10), 695–697 (2000).
[Crossref] [PubMed]

Kher, S.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Kim, B. Y.

Kishida, K.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Laronche, A.

Lau, A. P. T.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

Lees, G. P.

Li, A.

Li, B.

Li, J.

Li, M. J.

Li, X.

Liao, R.

Liu, D.

Lu, C.

Mao, W.

Martinez-Rios, A.

Martin-Lopez, S.

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Maughan, S. M.

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Michna, M. L.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced brillouin frequency shift variation in a single-mode fiber,” IEEE Photonics Technol. Lett. 25(23), 2362–2364 (2013).
[Crossref]

Minkovich, V. P.

Mishra, S.

Muanenda, Y. S.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Nannipieri, T.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Newson, T. P.

Oak, S. M.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Olshansky, R.

Oton, C. J.

Pachori, R. B.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Pan, Z.

Panicker, R. A.

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Pratt, D.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Raju, S. D. V. S. J.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Ravindranath, S. V. G.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Richardson, D. J.

Roberts, A.

Rochat, E.

Rodriguez, F.

Roger, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

Ross, J.

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

Roth, M. M.

Saffari, P.

Salceda-Delgado, G.

Saxena, M. K.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Schülzgen, A.

Shao, L.

Shao, X.

Shemirani, M. B.

Shieh, W.

Shum, P.

Shum, P. P.

Si, J.

Signorini, A.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
[Crossref] [PubMed]

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. H. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

Sui, Q.

Taki, M.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

Tam, H. Y.

Tang, M.

Thévenaz, L.

Thorn, K.

Toccafondo, I.

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

Tong, W.

Van Newkirk, A.

Villatoro, J.

Wai, P. K. A.

Wang, L.

Wang, M.

Wang, R.

Wang, T.

Wang, Y.

Webb, D.

Wei, H.

Weng, Y.

Wood, W. A.

Wu, H.

Wu, Z.

Xiong, L.

Yamauchi, Y.

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Yang, C.

Yu, Y.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced brillouin frequency shift variation in a single-mode fiber,” IEEE Photonics Technol. Lett. 25(23), 2362–2364 (2013).
[Crossref]

Zhang, H.

Zhang, N.

Zhang, S.

Zhang, W.

Zhang, Y.

Zhao, C.

Zhao, Z.

Zhou, W.

Zubia, J.

Appl. Opt. (1)

Electron. Lett. (2)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

J. Dakin, D. Pratt, G. Bibby, and J. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photonics Technol. Lett. 13(10), 1094–1096 (2001).
[Crossref]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photonics Technol. Lett. 9(7), 979–981 (1997).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced brillouin frequency shift variation in a single-mode fiber,” IEEE Photonics Technol. Lett. 25(23), 2362–2364 (2013).
[Crossref]

G. Bolognini, M. A. Soto, and F. Di Pasquale, “Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers,” IEEE Photonics Technol. Lett. 21(20), 1523–1525 (2009).
[Crossref]

IEEE Sens. J. (1)

M. Taki, Y. S. Muanenda, I. Toccafondo, A. Signorini, T. Nannipieri, and F. Di Pasquale, “Optimized hybrid Raman/fast-BOTDA sensor for temperature and strain measurements in large infrastructures,” IEEE Sens. J. 14(12), 4297–4304 (2014).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

S. M. Maughan, H. H. Kee, and T. P. Newson, “Simultaneous distributed fiber temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter,” Meas. Sci. Technol. 12(7), 834–842 (2001).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Express (11)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
[Crossref] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[Crossref] [PubMed]

Q. Huang, Y. Yu, X. Li, X. Chen, Y. Zhang, W. Zhou, and C. Du, “Micro-bending vector sensor based on six-air-hole grapefruit microstructure fiber using lateral offset splicing,” Opt. Express 23(3), 3010–3019 (2015).
[Crossref] [PubMed]

Q. Sui, H. Zhang, J. D. Downie, W. A. Wood, J. Hurley, S. Mishra, A. P. T. Lau, C. Lu, H. Y. Tam, and P. K. A. Wai, “Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference,” Opt. Express 23(3), 3156–3169 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031 (2015).
[Crossref] [PubMed]

Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
[Crossref] [PubMed]

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
[Crossref] [PubMed]

M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Opt. Lett. (14)

H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25(10), 695–697 (2000).
[Crossref] [PubMed]

Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27(2), 86–88 (2002).
[Crossref] [PubMed]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
[Crossref] [PubMed]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett. 40(13), 3113–3116 (2015).
[Crossref] [PubMed]

Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
[Crossref] [PubMed]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
[Crossref] [PubMed]

M. Taki, A. Signorini, C. J. Oton, T. Nannipieri, and F. Di Pasquale, “Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding,” Opt. Lett. 38(20), 4162–4165 (2013).
[Crossref] [PubMed]

P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
[Crossref] [PubMed]

A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
[Crossref] [PubMed]

Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42(1), 171–174 (2017).
[Crossref] [PubMed]

Photonics Sens. (1)

K. Kishida, Y. Yamauchi, and A. Guzik, “Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh System,” Photonics Sens. 4(1), 1–11 (2014).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the FMF based hybrid ROTDR-BOTDA system. EOM: electro-optic modulator; MS: microwave synthesizer; VOA: variable optical attenuator; TCC: temperature-controlled chamber; SOA: semiconductor optical amplifier; AFG: arbitrary function generator; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; PS: polarization switch; RF: Raman filter; BVTF: bandwidth-variable tunable filter; APD: avalanche photodetector; PIN: pin photodetector; Inset: microscope image of the taper spliced area of FMF and SMF.
Fig. 2
Fig. 2 Measured results of the curved FMF through BOTDA at room temperature. (a) Three-dimensional map of the measured BGS as a function of distance. (b) Measured BFS along the FMF; (c) Measured BFS of the last 40 m FMF under stress-free and bending condition. (d) Measured data and Lorentzian fitting of the BGS of point A, B, and C.
Fig. 3
Fig. 3 Measured results of BOTDA system. (a) BFS change in FMF as a function of curvature radius. (b) Measured BFS traces of the last 40-m FMF at different temperatures. (c) The BFS of FMF as a function of temperature. (d) Error in BFS measurement versus fiber length.
Fig. 4
Fig. 4 Measured results of ROTDR system without WT based denoising process. (a) Resolved temperature profiles along the FMF at different temperatures. (b) Temperature resolution versus fiber length.
Fig. 5
Fig. 5 Measured results of ROTDR system with WT based denoising process. (a) Anti-Stokes SpRS trace with and without WT based denoising at room temperature. (b) Resolved temperature profiles along the FMF at different temperatures. (c) Resolved temperature profiles of the last 40 m FMF at different temperatures. (d) Temperature resolution versus fiber length.
Fig. 6
Fig. 6 Resolved curvature profiles at different temperatures. (a) Measured distributed bending radius of the FMF. (b) Measured 1/R2 profiles and actual value (gray lattice).
Fig. 7
Fig. 7 Estimated 1/R2 resolution derived from both the measurements of Raman and Brillouin.

Tables (1)

Tables Icon

Table 1 Specific Properties of Each Linear Polarization Mode

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ v B = A Δ T + B Δ ε
Δ v B = a 2 V 2 B 4 μ R 2 ( 0.65 + 1.619 V 1.5 + 2.879 V 6 ) 4
ω 0 = 2 0.5 a ( 0.65 + 1.619 V 1.5 + 2.879 V 6 ) .
Δ v B = B k 2 n 1 2 ω 0 4 R 2 = C R 2
Δ v B = A Δ T + C R 2 .
I AS I St = ( λ St λ AS ) 4 exp ( h Δ v k B T )

Metrics