Abstract

Here, we present the investigations of photo-isomerization behavior and the nonlinear optical properties of azobenzene derivative LB films. The few-layer LB films of AOB-t4 and BNB-t4 exhibit positive nonlinear refraction and two-photon absorption properties as revealed by picosecond Z-scan. The increased conjugation by introducing an oxadiazole group improves the photo-isomerization rate and the nonlinear optical properties, due to a weaker intermolecular interaction and the formation of J-aggregates within AOB-t4 LB film. The third-order susceptibility of cis-AOB-t4 9-layer LB film reaches 1.866 × 10−9 esu and the two-photon absorption coefficient is on the order of 10−8 m/W. Interestingly, the 15-layer AOB-t4 LB film shows negative nonlinear refraction and saturable absorption. Taken together, we have demonstrated the switchable nonlinear optical absorption and refraction properties of AOB-t4 LB film with changing film thickness, which is of significance for nonlinear optics and photonics applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear and nonlinear optical behaviors of Langmuir–Blodgett multilayers of push–pull tolan derivatives

Hiroo Nakahara, Wei Liang, Hiromi Kimura, Tatsuo Wada, and Hiroyuki Sasabe
J. Opt. Soc. Am. B 15(1) 458-465 (1998)

Optically nonlinear Langmuir–Blodgett films: linear electro-optic properties of monolayers

Graham H. Cross, Ian R. Girling, Ian R. Peterson, Neil A. Cade, and John D. Earls
J. Opt. Soc. Am. B 4(6) 962-967 (1987)

Optical properties of Langmuir–Blodgett films investigated by a photoacoustic technique

Yue-song Jiang, Shu-yi Zhang, Hai-ping Shao, and Chun-wei Yuan
Appl. Opt. 34(1) 169-173 (1995)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
    [Crossref] [PubMed]
  2. L. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
    [Crossref]
  3. N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
    [Crossref] [PubMed]
  4. A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
    [Crossref]
  5. M. Virkki, O. Tuominen, M. Kauranen, and A. Priimagi, “Photoinduced nonlinear optical response in azobenzene-functionalized molecular glass,” Opt. Express 24(5), 4964–4971 (2016).
    [Crossref]
  6. Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
    [Crossref] [PubMed]
  7. A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
    [Crossref]
  8. T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
    [Crossref]
  9. F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
    [Crossref]
  10. J. Borges and J. F. Mano, “Molecular interactions driving the layer-by-layer assembly of multilayers,” Chem. Rev. 114(18), 8883–8942 (2014).
    [Crossref] [PubMed]
  11. S. A. Camacho, P. H. Aoki, F. F. de Assis, A. M. Pires, K. T. de Oliveira, R. F. Aroca, and C. J. L. Constantino, “Co-deposition of gold nanoparticles and metalloporphyrin using the Langmuir-Blodgett (LB) technique for surface-enhanced Raman scattering (SERS),” Appl. Spectrosc. 69(4), 451–456 (2015).
    [Crossref] [PubMed]
  12. P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
    [Crossref]
  13. P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
    [Crossref]
  14. H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
    [Crossref] [PubMed]
  15. L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
    [Crossref]
  16. S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
    [Crossref]
  17. J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
    [Crossref]
  18. W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
    [Crossref] [PubMed]
  19. N. V. Venkataraman and S. Vasudevan, “Conformation of methylene chains in an intercalated surfactant bilayer,” J. Phys. Chem. B 105(9), 1805–1812 (2001).
    [Crossref]
  20. M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
    [Crossref]
  21. T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
    [Crossref]
  22. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  23. G. Yang, H. Wang, G. Tan, A. Jiang, Y. Zhou, and Z. Chen, “Rh:BaTiO3 thin films with large nonlinear optical properties,” Appl. Opt. 41(9), 1729–1732 (2002).
    [Crossref] [PubMed]
  24. Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
    [Crossref]
  25. T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
    [Crossref] [PubMed]
  26. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
    [Crossref] [PubMed]

2016 (2)

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

M. Virkki, O. Tuominen, M. Kauranen, and A. Priimagi, “Photoinduced nonlinear optical response in azobenzene-functionalized molecular glass,” Opt. Express 24(5), 4964–4971 (2016).
[Crossref]

2015 (4)

S. A. Camacho, P. H. Aoki, F. F. de Assis, A. M. Pires, K. T. de Oliveira, R. F. Aroca, and C. J. L. Constantino, “Co-deposition of gold nanoparticles and metalloporphyrin using the Langmuir-Blodgett (LB) technique for surface-enhanced Raman scattering (SERS),” Appl. Spectrosc. 69(4), 451–456 (2015).
[Crossref] [PubMed]

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

2014 (2)

J. Borges and J. F. Mano, “Molecular interactions driving the layer-by-layer assembly of multilayers,” Chem. Rev. 114(18), 8883–8942 (2014).
[Crossref] [PubMed]

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

2013 (2)

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

2012 (1)

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

2009 (1)

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

2008 (1)

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

2007 (2)

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
[Crossref]

2006 (1)

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

2005 (1)

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

2004 (1)

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

2003 (1)

L. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[Crossref]

2002 (2)

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

G. Yang, H. Wang, G. Tan, A. Jiang, Y. Zhou, and Z. Chen, “Rh:BaTiO3 thin films with large nonlinear optical properties,” Appl. Opt. 41(9), 1729–1732 (2002).
[Crossref] [PubMed]

2001 (2)

N. V. Venkataraman and S. Vasudevan, “Conformation of methylene chains in an intercalated surfactant bilayer,” J. Phys. Chem. B 105(9), 1805–1812 (2001).
[Crossref]

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

1995 (1)

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

1993 (1)

T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Ahn, T. K.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Aoki, P. H.

Aroca, R. F.

Aurisicchio, C.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

Ayadi, A.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Bagheri, M.

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

Barlow, S.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Bhattacharjee, D.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Bin, Y.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

Bonifazi, D.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

Borges, J.

J. Borges and J. F. Mano, “Molecular interactions driving the layer-by-layer assembly of multilayers,” Chem. Rev. 114(18), 8883–8942 (2014).
[Crossref] [PubMed]

Camacho, L.

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

Camacho, S. A.

Cattaruzza, F.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

Cea, P.

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

Chakraborty, S.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Chen, P.

P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
[Crossref]

Chen, X.

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Chen, Z.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

G. Yang, H. Wang, G. Tan, A. Jiang, Y. Zhou, and Z. Chen, “Rh:BaTiO3 thin films with large nonlinear optical properties,” Appl. Opt. 41(9), 1729–1732 (2002).
[Crossref] [PubMed]

Cheng, Y.

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

Cho, D. W.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Constantino, C. J. L.

Couris, S.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

de Assis, F. F.

De Leo, F.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

de Oliveira, K. T.

Deb, S.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Debnath, P.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Deng, L.

L. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[Crossref]

Dong, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Du, Y.

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

Duesberg, G. S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

El-Ghayoury, A.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Fu, X.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Guo, L.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hales, J. M.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

Han, M.

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

Hasanzadeh, R.

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

He, T.

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

Hussain, S. A.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Hvilsted, S.

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

Ichimura, K.

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
[Crossref]

Ikeda, T.

T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
[Crossref]

Iliopoulos, K.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Jeong, D. H.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Jiang, A.

Jiang, H.

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Jin, Z.

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

Kauranen, M.

Kerasidou, A. P.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Khammar, F.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Kidowaki, M.

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

Kim, D.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Kim, D. Y.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Kim, S. K.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Kwon, J. H.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Lafuente, C.

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

Li, Q.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Li, Y.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Li, Z.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

Liaros, N.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

Liu, F.

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Liu, H. K.

L. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[Crossref]

Liu, M.

P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
[Crossref]

López, M. C.

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

Lu, G. Y.

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Ma, G.

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

Ma, X.

P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
[Crossref]

Maggini, L.

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

Mano, J. F.

J. Borges and J. F. Mano, “Molecular interactions driving the layer-by-layer assembly of multilayers,” Chem. Rev. 114(18), 8883–8942 (2014).
[Crossref] [PubMed]

Marder, S. R.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

Martín, S.

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

McEvoy, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Mhiri, T.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Mo, Y.

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

Möbius, D.

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

Moghadam, P. N.

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

Motiei, H.

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

Nath, J.

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Niu, L.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Osuka, A.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Pan, X.

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Pedrosa, J.

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

Perry, J. W.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

Pires, A. M.

Priimagi, A.

Qiu, L.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Qiu, W.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Ramanujam, P. S.

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

Ran, X.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Romero, M. T. M.

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

Royo, F. M.

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

Sahraoui, B.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sasaki, T.

T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, Y.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Shi, L.

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Shimizu, S.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Si, J.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Sousani, A.

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

Suzuki, M.

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

Tan, G.

Tuominen, O.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vasudevan, S.

N. V. Venkataraman and S. Vasudevan, “Conformation of methylene chains in an intercalated surfactant bilayer,” J. Phys. Chem. B 105(9), 1805–1812 (2001).
[Crossref]

Venkataraman, N. V.

N. V. Venkataraman and S. Vasudevan, “Conformation of methylene chains in an intercalated surfactant bilayer,” J. Phys. Chem. B 105(9), 1805–1812 (2001).
[Crossref]

Virkki, M.

Wang, C.

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

Wang, H.

Wang, J.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Wang, Y.

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Xiao, Y.

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Xu, W.

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Yang, G.

Ye, P.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Yim, C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zeng, Y.

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

Zhang, F.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

Zhang, L.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zhang, Q.

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zhang, Z.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

Zhao, F.

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

Zhao, J.

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

Zheng, S.

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

Zhong, C.

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

Zhou, Y.

Zou, G.

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Zouari, N.

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

ACS Nano (1)

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

F. Zhao, C. Wang, Y. Zeng, Z. Jin, and G. Ma, “Ultrafast third-order nonlinear optical properties of an azobenzene-containing ionic liquid crystalline polymer,” Chem. Phys. Lett. 558(12), 100–103 (2013).
[Crossref]

A. P. Kerasidou, F. Khammar, K. Iliopoulos, A. Ayadi, A. El-Ghayoury, N. Zouari, T. Mhiri, and B. Sahraoui, “Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities,” Chem. Phys. Lett. 597(5), 106–109 (2014).
[Crossref]

Chem. Rev. (1)

J. Borges and J. F. Mano, “Molecular interactions driving the layer-by-layer assembly of multilayers,” Chem. Rev. 114(18), 8883–8942 (2014).
[Crossref] [PubMed]

ChemPhysChem (1)

N. Liaros, S. Couris, L. Maggini, F. De Leo, F. Cattaruzza, C. Aurisicchio, and D. Bonifazi, “NLO response of photoswitchable azobenzene-based materials,” ChemPhysChem 14(13), 2961–2972 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (2)

T. K. Ahn, J. H. Kwon, D. Y. Kim, D. W. Cho, D. H. Jeong, S. K. Kim, M. Suzuki, S. Shimizu, A. Osuka, and D. Kim, “Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1),” J. Am. Chem. Soc. 127(37), 12856–12861 (2005).
[Crossref] [PubMed]

J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

Y. Wang, J. Zhao, J. Si, P. Ye, X. Fu, L. Qiu, and Y. Shen, “Dynamic studies of degenerate four-wave-mixing in an azobenzene-doped polymer film with an optical pump,” J. Chem. Phys. 103(13), 5357–5361 (1995).
[Crossref]

J. Phys. Chem. B (3)

N. V. Venkataraman and S. Vasudevan, “Conformation of methylene chains in an intercalated surfactant bilayer,” J. Phys. Chem. B 105(9), 1805–1812 (2001).
[Crossref]

Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang, “Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity,” J. Phys. Chem. B 112(25), 7387–7394 (2008).
[Crossref] [PubMed]

J. Pedrosa, M. T. M. Romero, L. Camacho, and D. Möbius, “Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface,” J. Phys. Chem. B 106(10), 2583–2591 (2002).
[Crossref]

J. Phys. Chem. C (1)

P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, and S. A. Hussain, “Reversible transition between excimer and J-aggregate of indocarbocyanine dye in Langmuir-Blodgett (LB) films,” J. Phys. Chem. C 119(17), 9429–9441 (2015).
[Crossref]

Langmuir (1)

W. Xu, Y. Wang, Y. Xiao, F. Liu, and G. Y. Lu, “Langmuir monolayer and Langmuir-Blodgett films formed by a melamine-headed azobenzene-derived amphiphile: interfacial assembly affected by host-guest interaction,” Langmuir 25(6), 3646–3651 (2009).
[Crossref] [PubMed]

Macromol. Rapid Commun. (1)

H. Jiang, X. Chen, X. Pan, G. Zou, and Q. Zhang, “Regulation of supramolecular chirality in co-assembled polydiacetylene LB films with removable azobenzene derivatives,” Macromol. Rapid Commun. 33(9), 773–778 (2012).
[Crossref] [PubMed]

Macromolecules (3)

P. Chen, X. Ma, and M. Liu, “Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: from noncovalent assembly to covalent polymer,” Macromolecules 40(14), 4780–4784 (2007).
[Crossref]

M. Han, M. Kidowaki, K. Ichimura, P. S. Ramanujam, and S. Hvilsted, “Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains,” Macromolecules 34(12), 4256–4262 (2001).
[Crossref]

T. Sasaki, T. Ikeda, and K. Ichimura, “Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid-crystalline polymer matrixes,” Macromolecules 26(1), 151–154 (1993).
[Crossref]

Opt. Commun. (1)

T. He, Y. Cheng, Y. Du, and Y. Mo, “Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films,” Opt. Commun. 275(1), 240–244 (2007).
[Crossref]

Opt. Eng. (1)

L. Deng and H. K. Liu, “Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films,” Opt. Eng. 42(10), 2936–2941 (2003).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

A. Sousani, P. N. Moghadam, R. Hasanzadeh, H. Motiei, and M. Bagheri, “Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties,” Opt. Mater. 51(3–4), 232–240 (2016).
[Crossref]

RSC Advances (1)

L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, “Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator,” RSC Advances 5(48), 38283–38289 (2015).
[Crossref]

Surf. Sci. (1)

S. Martín, P. Cea, C. Lafuente, F. M. Royo, and M. C. López, “Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization,” Surf. Sci. 563(1-3), 27–40 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The molecular structures of (a) AOB-t4 and (b) BNB-t4.
Fig. 2
Fig. 2 (a) π–A isotherms of trans-AOB-t4 and trans-BNB-t4 monolayers at the air-water interface. Normalized absorption spectra of (b) 1-layer trans-AOB-t4 LB film and trans-AOB-t4 chloroform solution (5 × 10−5 M), and (c) 1-layer trans-BNB-t4 LB film and trans-BNB-t4 chloroform solution (5 × 10−5 M). (d) FT-IR spectra of trans-BNB-t4 powder and trans-BNB-t4 15-layer LB film.
Fig. 3
Fig. 3 UV-vis absorption spectra of (a) 1-layer trans-AOB-t4 LB film with different UV irradiation time; (b) trans-AOB-t4 LB films with different layers, Inset: absorbance at 532 nm vs number of layers; (c) 9-layer trans-AOB-t4 LB film with different UV irradiation time; (d) multilayer trans-BNB-t4 LB films, Inset: absorbance at λmax vs number of layers; (e) 9-layer trans-BNB-t4 LB film with different UV irradiation time. (f) The correlation of UV-vis absorption changes with UV irradiation time for 9-layer trans-AOB-t4 and trans-BNB-t4 LB films, respectively.
Fig. 4
Fig. 4 The normalized Z-scan curves of (a) OA 9-layer trans-AOB-t4 LB film; (b) CA/OA 9-layer trans-AOB-t4 LB film; (c) OA 9-layer cis-AOB-t4 LB film and (d) CA/OA 9-layer cis-AOB-t4 LB film. The single pulse energy was 5 μJ at 532 nm.
Fig. 5
Fig. 5 The normalized Z-scan curves of (a) OA 9-layer trans-BNB-t4 LB film; (b) CA/OA 9-layer trans-BNB-t4 LB film; (c) OA 9-layer cis-BNB-t4 LB film and (d) CA/OA 9-layer cis-BNB-t4 LB film. The single pulse energy was 5 μJ at 532 nm.
Fig. 6
Fig. 6 The normalized Z-scan OA curves of trans-AOB-t4 LB films with different thickness. The single pulse energy was 8 μJ at 532 nm.
Fig. 7
Fig. 7 The normalized Z-scan curves of (a) OA 15-layer trans-AOB-t4 LB film, (b) CA/OA 15-layer trans-AOB-t4 LB film, (c) OA 15-layer cis-AOB-t4 LB film and (d) CA/OA 15-layer cis-AOB-t4 LB film. The single pulse energy was 5 μJ at 532 nm.

Tables (3)

Tables Icon

Table 1 Nonlinear optical parameters of 9-layer LB films for the two azobenzene derivatives.

Tables Icon

Table 2 Nonlinear optical parameters of trans-AOB-t4 and trans-BNB-t4 in chloroform solution.

Tables Icon

Table 3 Nonlinear optical parameters of 15-layer trans-AOB-t4 and cis-AOB-t4 LB films.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ln [t] 0 [t] [t] [t] = [t] 0 [t] 0 [t] At
T(z)= m=0 [ q 0 (z)] m (m+1) 3/2
n 2 = Δ T PV λ 0.406 (1s) 0.25 2π I 0 L eff .
Re χ (3) (esu)= c n 0 2 120 π 2 n 2 ( m 2 /W)
Im χ (3) (esu)= c 2 n 0 2 240ω π 2 β(m/W)

Metrics