Abstract

We report on the observation of uranium monoxide (UO) emission following fs laser ablation (LA) of a uranium metal sample. The formation and evolution of the molecular emission is studied under various ambient air pressures. Observation of UO emission spectra at a rarefied residual air pressure of ~1 Torr indicates that the UO molecule is readily formed in the expanding plasma with trace concentrations of oxygen present within the vacuum chamber. The persistence of the UO emission exceeded that of the atomic emission; however, the molecular emission was delayed in time compared to the atomic emission due to the necessary cooling and expansion of the plasma before the UO molecules can form.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Elucidating uranium monoxide spectral features from a laser-produced plasma

Sivanandan S. Harilal, Brian E. Brumfield, Nick Glumac, and Mark C. Phillips
Opt. Express 26(16) 20319-20330 (2018)

High-resolution spectroscopy of laser ablation plumes using laser-induced fluorescence

S. S. Harilal, N. L. LaHaye, and M. C. Phillips
Opt. Express 25(3) 2312-2326 (2017)

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium

Luke A. Emmert, Rosemarie C. Chinni, David A. Cremers, C. Randy Jones, and Wolfgang Rudolph
Appl. Opt. 50(3) 313-317 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).
  2. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  3. N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
    [Crossref]
  4. N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
    [Crossref] [PubMed]
  5. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
    [Crossref]
  6. J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
    [Crossref]
  7. E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233A–242A (2007).
    [Crossref] [PubMed]
  8. H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
    [Crossref]
  9. I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263 (2016).
    [Crossref]
  10. P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
    [Crossref]
  11. C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
    [Crossref]
  12. H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
    [Crossref]
  13. D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, “Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer,” Appl. Spectrosc. 66(3), 250–261 (2012).
    [Crossref] [PubMed]
  14. A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
    [Crossref]
  15. P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
    [Crossref]
  16. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
    [Crossref]
  17. D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
    [Crossref]
  18. R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
    [Crossref] [PubMed]
  19. J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
    [Crossref] [PubMed]
  20. S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
    [Crossref] [PubMed]
  21. B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
    [Crossref]
  22. M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
    [Crossref]
  23. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  24. J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
    [Crossref]
  25. J. Wormhoudt, “Uranium oxide gaseous ion and neutral infrared spectroscopy,” (Aerodyne Research, Inc., 1983).
  26. L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
    [Crossref] [PubMed]
  27. S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
    [Crossref]
  28. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
    [Crossref] [PubMed]
  29. J. Blaise and L. J. Radziemski, “Energy levels of neutral atomic uranium (Ui),” J. Opt. Soc. Am. 66(7), 644–659 (1976).
    [Crossref]
  30. B. A. Palmer, R. A. Keller, and J. R. Engleman, “An atlas of uranium emissions intensities in a hollow cathode discharge,” (Los Alamos Scientific Laboratory, 1980).
  31. R. L. Kurucz and B. Bell, “1995 Atomic Line Data: CD-ROM 23” (2016), retrieved http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html/ .
  32. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 5.3) [Online],” (National Institute of Standards and Technology, Gaithersburg, MD).
  33. I. Grenthe, J. Drożdżyński, T. Fujino, E. C. Buck, T. E. Albrecht-Schmitt, and S. F. Wolf, Uranium*, in The Chemistry of the Actinide and Transactinide Elements, L. R. Morss, N. M. Edelstein, and J. Fuger, eds. (Springer Netherlands, Dordrecht, 2011), pp. 253–698.
  34. M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
    [Crossref]
  35. I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, “Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 67(11), 1275–1284 (2013).
    [Crossref] [PubMed]
  36. J. E. Barefield, E. J. Judge, J. M. Berg, S. P. Willson, L. A. Le, and L. N. Lopez, “Analysis and spectral assignments of mixed actinide oxide samples using Laser-Induced Breakdown Spectroscopy (LIBS),” Appl. Spectrosc. 67(4), 433–440 (2013).
    [Crossref] [PubMed]
  37. R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of Uranium Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 63(11), 1238–1250 (2009).
    [Crossref] [PubMed]
  38. J. Blaise, J.-F. Wyart, J. Vergès, R. Engleman, B. A. Palmer, and L. J. Radziemski, “Energy levels and isotope shifts for singly ionized uranium (U II),” J. Opt. Soc. Am. B 11(10), 1897–1929 (1994).
    [Crossref]
  39. A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
    [Crossref]
  40. S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
    [Crossref]
  41. D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, and D. W. Kim, “Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51(1), 22–29 (1997).
    [Crossref]
  42. W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
    [Crossref]
  43. R. D. Hunt and L. Andrews, “Reactions of Pulsed-laser evaporated uranium atoms with molecular-oxygen - infrared-spectra of Uo, Uo2, Uo3, Uo2+, Uo22+, and Uo3-O2 in solid argon,” J. Chem. Phys. 98(5), 3690–3696 (1993).
    [Crossref]
  44. R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
    [Crossref]
  45. R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
    [Crossref]
  46. S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
    [Crossref] [PubMed]

2016 (11)

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263 (2016).
[Crossref]

P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
[Crossref]

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
[Crossref] [PubMed]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

2015 (6)

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

2014 (3)

N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
[Crossref] [PubMed]

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (1)

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

2009 (1)

2008 (1)

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

2002 (1)

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
[Crossref]

1998 (1)

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

1997 (2)

1994 (2)

J. Blaise, J.-F. Wyart, J. Vergès, R. Engleman, B. A. Palmer, and L. J. Radziemski, “Energy levels and isotope shifts for singly ionized uranium (U II),” J. Opt. Soc. Am. B 11(10), 1897–1929 (1994).
[Crossref]

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

1993 (2)

R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
[Crossref]

R. D. Hunt and L. Andrews, “Reactions of Pulsed-laser evaporated uranium atoms with molecular-oxygen - infrared-spectra of Uo, Uo2, Uo3, Uo2+, Uo22+, and Uo3-O2 in solid argon,” J. Chem. Phys. 98(5), 3690–3696 (1993).
[Crossref]

1985 (1)

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

1976 (1)

1974 (1)

W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
[Crossref]

Ahn, S.-H.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Andrews, L.

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
[Crossref]

R. D. Hunt and L. Andrews, “Reactions of Pulsed-laser evaporated uranium atoms with molecular-oxygen - infrared-spectra of Uo, Uo2, Uo3, Uo2+, Uo22+, and Uo3-O2 in solid argon,” J. Chem. Phys. 98(5), 3690–3696 (1993).
[Crossref]

Anglos, D.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Barefield, J. E.

Beardsley, B.

Beddingfield, A.

Berg, J. M.

Blaise, J.

Bol’shakov, A. A.

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Bostian, M.

Brumfield, B. E.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

Cannon, B. D.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Chan, G. C.

Chan, G. C. Y.

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

Chinni, R. C.

Choi, I.

Choi, J.-O.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Chu, W.-S.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Cremers, D. A.

Diwakar, P. M.

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Dong, M.

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

Duffin, A. M.

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Eiden, G. C.

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Elhassan, A.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Engleman, R.

Fite, W. L.

W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
[Crossref]

Ghebregziabher, I.

Giakoumaki, A.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Glaus, R.

R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
[Crossref] [PubMed]

Gonzalez, J. J.

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

Gornushkin, I.

R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
[Crossref] [PubMed]

Gunther, D.

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

Gurevich, E. L.

Hahn, D. W.

Harilal, S. S.

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Harith, M. A.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Hartig, K. C.

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263 (2016).
[Crossref]

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

Heaven, M. C.

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

Hergenröder, R.

Hou, H.

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Hunt, R. D.

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
[Crossref]

R. D. Hunt and L. Andrews, “Reactions of Pulsed-laser evaporated uranium atoms with molecular-oxygen - infrared-spectra of Uo, Uo2, Uo3, Uo2+, Uo22+, and Uo3-O2 in solid argon,” J. Chem. Phys. 98(5), 3690–3696 (1993).
[Crossref]

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Ingo, G. M.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Irving, P.

W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
[Crossref]

Jang, K.-H.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Javier Laserna, J.

J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
[Crossref] [PubMed]

Jones, C. R.

Jovanovic, I.

P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
[Crossref]

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance-resolved characteristics of filament-induced copper plasma,” Opt. Express 24(5), 5263 (2016).
[Crossref]

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

Judge, E. J.

Kaledin, L. A.

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

Karch, L.

Kim, C.-S.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Kim, D. E.

Kim, D. W.

Kitazima, I.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Ko, P.

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

Koch, J.

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

LaHaye, N. L.

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Laserna, J. J.

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

Le, L. A.

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Lee, H.-T.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Lo, H. H.

W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
[Crossref]

Lopez, L. N.

Lu, J.

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

Ma, X. W.

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Mao, X.

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, “Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 67(11), 1275–1284 (2013).
[Crossref] [PubMed]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Martinez, M. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
[Crossref]

McKay, C. P.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

McNutt, J.

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

Morgan, P. K.

P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
[Crossref]

Moros, J.

J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
[Crossref] [PubMed]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

Navarro-Northrup, C.

Nicolai, J. P.

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

Niki, H.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Oh, K. J.

Omenetto, N.

Palmer, B. A.

Park, H. K.

Park, J.-I.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Parks, E. K.

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

Perry, D. L.

I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, “Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 67(11), 1275–1284 (2013).
[Crossref] [PubMed]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Phillips, M. C.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
[Crossref] [PubMed]

Pisonero, J.

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Radziemski, L. J.

Riedel, J.

R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
[Crossref] [PubMed]

Riley, S. J.

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

Robbiola, L.

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

Russo, R. E.

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, “Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 67(11), 1275–1284 (2013).
[Crossref] [PubMed]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Scott, J. R.

P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
[Crossref]

Serrano, J.

J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
[Crossref] [PubMed]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

Shah, N. P.

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Skrodzki, P. J.

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Smith, C. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
[Crossref]

Smithwick, R.

Song, J.-H.

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

Sorkhabi, O.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Suter, J. D.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Taylor, N.

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

Taylor, N. R.

Toth, L. M.

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

Veirs, D. K.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
[Crossref]

Vergès, J.

Walle, M.

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

Wang, S. L.

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Willson, S. P.

Wyart, J.-F.

Yasuda, T.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Yeak, J.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

Yee, B.

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

Yoo, K. J.

Yustein, J. T.

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
[Crossref]

Zhang, D. C.

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Zheng, R.

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Zhu, X. L.

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Zorba, V.

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

AIP Conf. Proc. (1)

R. D. Hunt, L. M. Toth, J. T. Yustein, and L. Andrews, “Matrix-isolation infrared-spectra of O2 and N2 insertion reactions with atomic uranium,” AIP Conf. Proc. 288, 148–152 (1994).
[Crossref]

Anal. Chem. (2)

R. Glaus, J. Riedel, and I. Gornushkin, “Insight into the formation of molecular species in laser-induced plasma of isotopically labeled organic samples,” Anal. Chem. 87(19), 10131–10137 (2015).
[Crossref] [PubMed]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Appl. Spectrosc. (7)

E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233A–242A (2007).
[Crossref] [PubMed]

D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, and D. W. Kim, “Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51(1), 22–29 (1997).
[Crossref]

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of Uranium Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 63(11), 1238–1250 (2009).
[Crossref] [PubMed]

D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, “Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer,” Appl. Spectrosc. 66(3), 250–261 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

J. E. Barefield, E. J. Judge, J. M. Berg, S. P. Willson, L. A. Le, and L. N. Lopez, “Analysis and spectral assignments of mixed actinide oxide samples using Laser-Induced Breakdown Spectroscopy (LIBS),” Appl. Spectrosc. 67(4), 433–440 (2013).
[Crossref] [PubMed]

I. Choi, G. C. Chan, X. Mao, D. L. Perry, and R. E. Russo, “Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 67(11), 1275–1284 (2013).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. C. Heaven, J. P. Nicolai, S. J. Riley, and E. K. Parks, “Rotationally Resolved Electronic-Spectra for Uranium Monoxide,” Chem. Phys. Lett. 119(2-3), 229–233 (1985).
[Crossref]

Int. J. of Precis. Eng. Manuf.- Green Tech. (1)

W.-S. Chu, C.-S. Kim, H.-T. Lee, J.-O. Choi, J.-I. Park, J.-H. Song, K.-H. Jang, and S.-H. Ahn, “Hybrid manufacturing in micro/nano scale: A Review,” Int. J. of Precis. Eng. Manuf.- Green Tech. 1, 75–92 (2014).

J. Anal. At. Spectrom. (6)

N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

J. Koch, M. Walle, J. Pisonero, and D. Gunther, “Performance characteristics of ultra-violet femtosecond laser ablation inductively coupled plasma mass spectrometry at ∼265 and ∼200 nm,” J. Anal. At. Spectrom. 21(9), 932–940 (2006).
[Crossref]

A. A. Bol’shakov, X. Mao, J. J. Gonzalez, and R. E. Russo, “Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art,” J. Anal. At. Spectrom. 31(1), 119–134 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

J. Chem. Phys. (3)

R. D. Hunt, J. T. Yustein, and L. Andrews, “Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen,” J. Chem. Phys. 98(8), 6070–6074 (1993).
[Crossref]

W. L. Fite, H. H. Lo, and P. Irving, “Associative ionization in U+O and U+O2 collisions,” J. Chem. Phys. 60(4), 1236–1250 (1974).
[Crossref]

R. D. Hunt and L. Andrews, “Reactions of Pulsed-laser evaporated uranium atoms with molecular-oxygen - infrared-spectra of Uo, Uo2, Uo3, Uo2+, Uo22+, and Uo3-O2 in solid argon,” J. Chem. Phys. 98(5), 3690–3696 (1993).
[Crossref]

J. Mol. Spectrosc. (1)

L. A. Kaledin and M. C. Heaven, “Electronic Spectroscopy of UO,” J. Mol. Spectrosc. 185(1), 1–7 (1997).
[Crossref] [PubMed]

J. Nucl. Sci. Technol. (1)

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

J. Serrano, J. Moros, and J. Javier Laserna, “Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation,” Phys. Chem. Chem. Phys. 18(4), 2398–2408 (2016).
[Crossref] [PubMed]

Plasma Sci. Technol. (1)

D. C. Zhang, X. W. Ma, S. L. Wang, and X. L. Zhu, “Influence of ambient gas on laser-induced breakdown spectroscopy of uranium metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (10)

P. J. Skrodzki, N. P. Shah, N. Taylor, K. C. Hartig, N. L. LaHaye, B. E. Brumfield, I. Jovanovic, M. C. Phillips, and S. S. Harilal, “Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas,” Spectrochim. Acta B At. Spectrosc. 125, 112–119 (2016).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

H. Hou, G. C. Y. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

P. K. Morgan, J. R. Scott, and I. Jovanovic, “Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma,” Spectrochim. Acta B At. Spectrosc. 116, 58–62 (2016).
[Crossref]

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B At. Spectrosc. 57(5), 929–937 (2002).
[Crossref]

B. Yee, K. C. Hartig, P. Ko, J. McNutt, and I. Jovanovic, “Measurement of boron isotopic ratio with non-gated molecular spectroscopy of femtosecond laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 79–80, 72–76 (2013).
[Crossref]

M. Dong, G. C. Y. Chan, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio,” Spectrochim. Acta B At. Spectrosc. 100, 62–69 (2014).
[Crossref]

A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola, and M. A. Harith, “Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys,” Spectrochim. Acta B At. Spectrosc. 63(4), 504–511 (2008).
[Crossref]

S. S. Harilal, P. M. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasmas,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Other (5)

B. A. Palmer, R. A. Keller, and J. R. Engleman, “An atlas of uranium emissions intensities in a hollow cathode discharge,” (Los Alamos Scientific Laboratory, 1980).

R. L. Kurucz and B. Bell, “1995 Atomic Line Data: CD-ROM 23” (2016), retrieved http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html/ .

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 5.3) [Online],” (National Institute of Standards and Technology, Gaithersburg, MD).

I. Grenthe, J. Drożdżyński, T. Fujino, E. C. Buck, T. E. Albrecht-Schmitt, and S. F. Wolf, Uranium*, in The Chemistry of the Actinide and Transactinide Elements, L. R. Morss, N. M. Edelstein, and J. Fuger, eds. (Springer Netherlands, Dordrecht, 2011), pp. 253–698.

J. Wormhoudt, “Uranium oxide gaseous ion and neutral infrared spectroscopy,” (Aerodyne Research, Inc., 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simplified schematic of the experimental setup utilized in this work, which is licensed for laser ablation analysis of radioactive and special nuclear materials (SNM).
Fig. 2
Fig. 2 Intensity calibrated LIBS emission spectrum of natural uranium metal sample following femtosecond laser ablation in the range of (a) 400 – 500 nm and (b) 500 – 600 nm with a 1.0 μs gate delay and 10 μs gate width averaged over 10 laser shots. After the vacuum chamber was evacuated, it was filled with argon to a pressure of 82 Torr; however, 3 Torr of ambient air leaked into the chamber during the measurement. Strong and commonly referenced uranium emission lines are labeled in the spectrum for neutral (blue), ionic (red), and molecular (black) emissions.
Fig. 3
Fig. 3 Uranium LIBS spectra at 95, 440, and 730 Torr air pressure for several gate delays and widths. The spectra were intensity corrected for a range of ICCD gains used during the measurement. A vertical dashed line has been placed at the center of the observed UO emission line to help guide the eye.
Fig. 4
Fig. 4 Temporally resolved peak intensity of (a) U I 591.53 nm and (b) UO 593.57 nm emission lines with a constant gate width of 1.0 μs. The smooth curves in the figure are the exponential decay fit. The measurements were taken at atmospheric pressure.
Fig. 5
Fig. 5 Temporally resolved molecular-to-atomic emission ratio for the emission lines referenced in Fig. 3 with a constant gate width of 1.0 μs under ambient atmospheric conditions.
Fig. 6
Fig. 6 U I 593.38 nm and UO 593.57 peak emission intensity as a function of the ambient air pressure in the vacuum chamber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U+ O 2 UO+O
UO+ O 2 U O 2 +O
U O 2 + O 2 U O 3 +O

Metrics