Abstract

A fiber coupler for low-crosstalk orbital angular momentum mode beam splitter is proposed with the structure of two separate and parallel microfibers. By properly setting the center-to-center distance between microfibers, the crosstalk is less than −20 dB, which means that the purity of the needed OAM mode in output port is higher than 99%. For a fixed overlapping length, high coupling efficiency (>97%) is achieved in 1545-1560 nm. The operating wavelength is tuned to the whole C-band by using the thermosensitive liquid. So the designed coupler can achieve the tunable coupling ratio over the whole C-band, which is a prospective component for the further OAM fiber system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber design with orbital angular momentum light purity higher than 99.9%

Zhishen Zhang, Jiulin Gan, Xiaobo Heng, Yuqing Wu, Qingyu Li, Qi Qian, Dongdan Chen, and Zhongmin Yang
Opt. Express 23(23) 29331-29341 (2015)

All-fiber stable orbital angular momentum beam generation and propagation

Xiaobo Heng, Jiulin Gan, Zhishen Zhang, Jiong Li, Muqiao Li, Hua Zhao, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 26(13) 17429-17436 (2018)

Fiber coupler for generating orbital angular momentum modes

Yan Yan, Jian Wang, Lin Zhang, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Bishara Shamee, Alan E. Willner, Kevin Birnbaum, and Sam Dolinar
Opt. Lett. 36(21) 4269-4271 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  2. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
    [Crossref]
  3. T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  4. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  5. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 267–270 (2015).
    [Crossref]
  6. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
    [Crossref] [PubMed]
  7. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
    [Crossref] [PubMed]
  8. Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, “Optical fiber design with orbital angular momentum light purity higher than 99.9,” Opt. Express 23(23), 29331–29341 (2015).
    [Crossref] [PubMed]
  9. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref] [PubMed]
  10. Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
    [Crossref] [PubMed]
  11. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
    [Crossref] [PubMed]
  12. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [Crossref] [PubMed]
  13. Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
    [Crossref]
  14. N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
    [Crossref]
  15. C. N. Alexeyev, A. V. Milodan, M. C. Alexeyeva, and M. A. Yavorsky, “Inversion of the topological charge of optical vortices in a coil fiber resonator,” Opt. Lett. 41(7), 1526–1529 (2016).
    [Crossref] [PubMed]
  16. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
    [Crossref] [PubMed]
  17. L. Fang and J. Wang, “Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings,” Opt. Lett. 40(17), 4010–4013 (2015).
    [Crossref] [PubMed]
  18. G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5(5), 554–557 (1993).
    [Crossref]
  19. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]

2016 (1)

2015 (8)

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 267–270 (2015).
[Crossref]

L. Fang and J. Wang, “Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings,” Opt. Lett. 40(17), 4010–4013 (2015).
[Crossref] [PubMed]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref] [PubMed]

Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, “Optical fiber design with orbital angular momentum light purity higher than 99.9,” Opt. Express 23(23), 29331–29341 (2015).
[Crossref] [PubMed]

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

2014 (1)

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (2)

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

2006 (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

1993 (1)

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5(5), 554–557 (1993).
[Crossref]

1965 (1)

Ahmed, N.

Alexeyev, C. N.

Alexeyev, N.

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

Alexeyeva, M. C.

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Birnbaum, K.

Boklag, N. A.

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cai, X. D.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Chen, D.

Chen, H.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Chen, M. C.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Chen, Y.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Dolinar, S. J.

Du, C.

Fadeyeva, T. A.

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

Fang, L.

Fazal, I. M.

Fickler, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Fink, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Gan, J.

Golowich, S. E.

Gregg, P.

Handsteiner, J.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Heng, X.

Hu, X.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Krenn, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Kristensen, P.

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Li, Q.

Li, S.

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, Z.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, G. N.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, N. L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Lu, C. Y.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Malik, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Malitson, I.

Milodan, A. V.

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Mo, Q.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nolting, H. P.

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5(5), 554–557 (1993).
[Crossref]

Pan, J. W.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Qian, Q.

Ramachandran, S.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Shamee, B.

Su, Z. E.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Sztefka, G.

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5(5), 554–557 (1993).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ursin, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Wang, J.

Wang, X. L.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Wu, D.

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

Wu, Y.

Xu, H.

Xu, P.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yan, Y.

Yang, J. Y.

Yang, L.

Yang, Z.

Yavorsky, M. A.

C. N. Alexeyev, A. V. Milodan, M. C. Alexeyeva, and M. A. Yavorsky, “Inversion of the topological charge of optical vortices in a coil fiber resonator,” Opt. Lett. 41(7), 1526–1529 (2016).
[Crossref] [PubMed]

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yu, S.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Zhang, L.

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Zhang, Z.

Zhong, Z.

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Sztefka and H. P. Nolting, “Bidirectional eigenmode propagation for large refractive index steps,” IEEE Photonics Technol. Lett. 5(5), 554–557 (1993).
[Crossref]

J. Opt. (1)

N. Alexeyev, N. A. Boklag, T. A. Fadeyeva, and M. A. Yavorsky, “Tunnelling of orbital angular momentum in parallel optical waveguides,” J. Opt. 13(6), 064012 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Light Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nature (1)

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature 518(7540), 516–519 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Opt. Commun. (1)

Y. Zhang, Y. Chen, Z. Zhong, P. Xu, H. Chen, and S. Yu, “Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler,” Opt. Commun. 350(1), 160–164 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optica (1)

Phys. Rev. Lett. (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the tunable OAM coupler coupler; insets are the refractive index profile of each part. The red arrows represent the direction of the OAM beam travel.
Fig. 2
Fig. 2 When +1,+1 mode is launched at 1550 nm: (a) the mode distributions and phase distributions at the different coupling length with d=3.1μm ; (b) the coupling efficiencies of modes in the cross output port with d=3.1μm ; (c) and (d) are the coupling results with d=6.35μm ; (e) the coupling efficiency of +1,+1 mode in the cross output port with the different interval d between two microfibers.
Fig. 3
Fig. 3 (a) The wavelength dependence of +1,+1 mode in the output ports (at 3.535 cm); (b) the coupling efficiency of +1,+1 mode in the cross output port with (the refractive index of liquid, the input wavelength).
Fig. 4
Fig. 4 (a) The different coupling ratios achieved at 3.885 cm; (b) the tunable coupling efficiency over the C-band within 25-150 °C.
Fig. 5
Fig. 5 The mode distributions and phase distributions of the +1,+1 mode in the straight microfiber (a) and (b), and the bending microbiber (c) and (d).

Tables (1)

Tables Icon

Table 1 The effective refractive indices of the eigenmodes in the microfiber.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E 1 = i=1 N 1 a i e 1i exp( j β 1i z )
E 2 = i=1 N 2 b i e 2i exp( j β 2i z )
E 3 = i=1 N 3 c i e 3i exp( j β 3i z )
E 1 = p=1 N 1 a p e 1p
E 2_t = E 1_t
b i = E 2 e 2i * ds e 2i e 2i * ds
b i = ( p=1 N 1 a p e 1p _t ) e 2i_t * ds e 2i_t e 2i_t * ds
Γ mode1_mode2 = e mode1 e mode2 * ds e mode2 e mode2 * ds
b i = p=1 N 1 a p Γ 1p_2i
E 2 = i=1 N 2 b i e 2i exp( j β 2i L )
E 3_t = E 2_t
c q = ( i=1 N 2 b i e 2i_t exp( j β 2i L ) ) e 3q_t * ds e 3q_t e 3q_t * ds = i=1 N 2 b i exp( j β 2i L ) Γ 2i_3q
c q = i=1 N 2 p=1 N 1 a p Γ 1p_2i exp( j β 2i L ) Γ 2i_3q
η pq = | c q e 3q c q * e 3q * ds | | a p e 1p a p * e 1p * ds | = | c q c q * ds | | a p a p * ds |
a i = δ ip
η pq =| [ i=1 N 2 Γ 1p_2i exp( j β 2i L ) Γ 2i_3q ] [ i=1 N 2 Γ 1p_2i exp( j β 2i L ) Γ 2i_3q ] * |
η pq =| [ i=1 N 2 Γ 1p_2i Γ 1q_2i exp( j β 2i L ) ] [ i=1 N 2 Γ 1p_2i Γ 1q_2i exp( j β 2i L ) ] * |

Metrics