Abstract

We propose and demonstrate numerically a simple method for ultrahigh-speed imaging of complex (amplitude and phase) samples. Our method exploits redundancy in single-shot ptychography (SSP) for reconstruction of multiple frames from a single camera snapshot. We term the method Time-resolved Imaging by Multiplexed Ptychography (TIMP). We demonstrate TIMP numerically–reconstructing 15 frames of a complexed-valued dynamic object from a single noisy camera snapshot. Experimentally, we demonstrate SSP with single pulse illumination with pulse duration of 150 psec, where its spectral bandwidth can support 30 fsec pulses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed ptychographic imaging based on multiple-beam illumination

Xiaoliang He, Suhas P. Veetil, Xingchen Pan, Aihui Sun, Cheng Liu, and Jianqiang Zhu
Opt. Express 26(20) 25869-25879 (2018)

Single-shot ptychography

Pavel Sidorenko and Oren Cohen
Optica 3(1) 9-14 (2016)

Ultrahigh Speed Photography of Picosecond Light Pulses and Echoes

M. A. Duguay and A. T. Mattick
Appl. Opt. 10(9) 2162-2170 (1971)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
    [Crossref] [PubMed]
  2. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
    [Crossref] [PubMed]
  3. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
    [Crossref]
  4. C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
    [Crossref] [PubMed]
  5. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
    [Crossref] [PubMed]
  6. M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
    [Crossref] [PubMed]
  7. Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
    [Crossref] [PubMed]
  8. I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
    [Crossref] [PubMed]
  9. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  10. X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
    [Crossref] [PubMed]
  11. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
    [Crossref] [PubMed]
  12. M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
    [Crossref] [PubMed]
  13. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
    [Crossref]
  14. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
    [Crossref] [PubMed]
  15. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [Crossref]
  16. C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
    [Crossref]
  17. J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
    [Crossref] [PubMed]
  18. X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
    [Crossref] [PubMed]
  19. J. M. Rodenburg, “Ptychography and Related Diffractive Imaging Methods,” in Advances in Imaging and Electron Physics (2008), pp. 87–184.
  20. J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
    [Crossref] [PubMed]
  21. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
    [Crossref]
  22. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
    [Crossref] [PubMed]
  23. X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
    [Crossref]
  24. P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9 (2016).
    [Crossref]
  25. W. Xu, H. Xu, Y. Luo, T. Li, and Y. Shi, “Optical watermarking based on single-shot-ptychography encoding,” Opt. Express 24(24), 27922–27936 (2016).
    [Crossref] [PubMed]
  26. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
    [Crossref] [PubMed]
  27. S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
    [Crossref]
  28. D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
    [Crossref] [PubMed]
  29. B. Zhang, D. F. Gardner, M. H. Seaberg, E. R. Shanblatt, C. L. Porter, R. Karl, C. A. Mancuso, H. C. Kapteyn, M. M. Murnane, and D. E. Adams, “Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb,” Opt. Express 24(16), 18745–18754 (2016).
    [Crossref] [PubMed]
  30. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15(6), 1662 (1998).
    [Crossref]
  31. P. Li, T. Edo, D. Batey, J. Rodenburg, and A. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24(8), 9038–9052 (2016).
    [Crossref] [PubMed]
  32. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
    [Crossref] [PubMed]
  33. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
    [Crossref] [PubMed]
  34. P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
    [Crossref] [PubMed]
  35. Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
    [Crossref] [PubMed]
  36. T. M. Godden, R. Suman, M. J. Humphry, J. M. Rodenburg, and A. M. Maiden, “Ptychographic microscope for three-dimensional imaging,” Opt. Express 22(10), 12513–12523 (2014).
    [Crossref] [PubMed]
  37. P. Hessing, B. Pfau, E. Guehrs, M. Schneider, L. Shemilt, J. Geilhufe, and S. Eisebitt, “Holography-guided ptychography with soft X-rays,” Opt. Express 24(2), 1840–1851 (2016).
    [Crossref] [PubMed]
  38. Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
    [Crossref]
  39. X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22(10), 12634–12644 (2014).
    [Crossref] [PubMed]
  40. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
    [Crossref] [PubMed]
  41. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  42. S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
    [Crossref] [PubMed]
  43. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref] [PubMed]
  44. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
    [Crossref] [PubMed]

2016 (9)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9 (2016).
[Crossref]

P. Hessing, B. Pfau, E. Guehrs, M. Schneider, L. Shemilt, J. Geilhufe, and S. Eisebitt, “Holography-guided ptychography with soft X-rays,” Opt. Express 24(2), 1840–1851 (2016).
[Crossref] [PubMed]

P. Li, T. Edo, D. Batey, J. Rodenburg, and A. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24(8), 9038–9052 (2016).
[Crossref] [PubMed]

B. Zhang, D. F. Gardner, M. H. Seaberg, E. R. Shanblatt, C. L. Porter, R. Karl, C. A. Mancuso, H. C. Kapteyn, M. M. Murnane, and D. E. Adams, “Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb,” Opt. Express 24(16), 18745–18754 (2016).
[Crossref] [PubMed]

W. Xu, H. Xu, Y. Luo, T. Li, and Y. Shi, “Optical watermarking based on single-shot-ptychography encoding,” Opt. Express 24(24), 27922–27936 (2016).
[Crossref] [PubMed]

2015 (3)

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
[Crossref] [PubMed]

2014 (7)

2013 (7)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[Crossref] [PubMed]

Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

2012 (3)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

2011 (2)

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

2009 (3)

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

2008 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

2007 (1)

2006 (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[Crossref] [PubMed]

2004 (1)

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

2003 (1)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

2000 (1)

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

1998 (1)

Acremann, Y.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Adams, D. E.

Alvey, R. M.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Armstrong, D.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Back, C. H.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Barker, J.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Batey, D.

Batey, D. J.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Bazylinski, D. A.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Beghuin, D.

Bisgaard, C. Z.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Bryant, D. A.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Buess, M.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Bullkich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cao, S.

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

Chantrell, R. W.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Chapman, H. N.

Charrière, F.

Chen, X.

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

Cheng, Z.

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

Chu, Y. S.

Clarkin, O. J.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

Claus, D.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Cohen, O.

P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9 (2016).
[Crossref]

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cohen-Hyams, T.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Colomb, T.

Cuche, E.

Curmi, P. M. G.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Dahlgren, P.

Dana, H.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Dangor, A. E.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

de Jong, N.

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

Deen, M. J.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Denes, P.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Depeursinge, C.

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Dong, S.

Dürr, H. A.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Edo, T.

Eisebitt, S.

Eldar, Y. C.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

El-Desouki, M.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Emery, Y.

Evans, R. F. L.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Evans, R. G.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Fang, Q.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Faulkner, H. M. L.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Feurer, T.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Fleischer, A.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Fujita, H.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Gao, L.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Gardner, D. F.

Gazit, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Geilhufe, J.

Goda, K.

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Godden, T. M.

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Guehrs, E.

Guo, B.

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

Guo, K.

Harder, R.

Hessing, P.

Hirosawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Hitchcock, A. P.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Hockett, P.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

Horisaki, R.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Huang, X.

Humphry, M. J.

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Hwu, Y.

Ishikawa, T.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
[Crossref] [PubMed]

Itoh, A.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Iwasaki, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Jalali, B.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Jiang, S.

Joseph, J.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Kachel, T.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Kannari, F.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Kapteyn, H. C.

Karl, R.

Kfir, O.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Kimel, A. V.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Kirilyuk, A.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Kitagawa, Y.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Kley, E. B.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Kodama, R.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Kok, P.

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

Krushelnick, K.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Kühn, J.

Lei, C.

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

Li, C.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Li, P.

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

P. Li, T. Edo, D. Batey, J. Rodenburg, and A. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24(8), 9038–9052 (2016).
[Crossref] [PubMed]

Li, T.

Li, X.

Liang, J.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Liao, H.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Lins, U.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Liu, C.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Liu, L.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Luo, Y.

Maiden, A.

Maiden, A. M.

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

T. M. Godden, R. Suman, M. J. Humphry, J. M. Rodenburg, and A. M. Maiden, “Ptychographic microscope for three-dimensional imaging,” Opt. Express 22(10), 12513–12523 (2014).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

Maldovan, M.

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[Crossref] [PubMed]

Mancuso, C. A.

Marchesini, S.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Marquet, P.

Marriott, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

Marrison, J.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

Melchior, H.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Menzel, A.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Miao, J.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
[Crossref] [PubMed]

J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15(6), 1662 (1998).
[Crossref]

Mima, K.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Miyakoshi, T.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Miyanaga, N.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Montfort, F.

Murnane, M. M.

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Nakagawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nakamura, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nanda, P.

Nelson, K. A.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Norimatsu, T.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Norreys, P. A.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

O’Toole, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

Oishi, Y.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Osherovich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Ostler, T. A.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Pan, X.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Pescia, D.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[Crossref] [PubMed]

Pfau, B.

Pontius, N.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Porter, C. L.

Portmann, O.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Radu, I.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Ramchandran, K.

Rasing, T.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Räty, L.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

Robinson, I. K.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
[Crossref] [PubMed]

X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22(10), 12634–12644 (2014).
[Crossref] [PubMed]

Robles, F. E.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Rodenburg, J.

Rodenburg, J. M.

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

T. M. Godden, R. Suman, M. J. Humphry, J. M. Rodenburg, and A. M. Maiden, “Ptychographic microscope for three-dimensional imaging,” Opt. Express 22(10), 12513–12523 (2014).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Rose, S. J.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Sakuma, I.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Sayre, D.

Schneider, M.

Scholes, G. D.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Seaberg, M. H.

Segev, M.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Shanblatt, E. R.

Shapiro, D. A.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Shechtman, Y.

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Shemilt, L.

Shi, Y.

Shi, Y.-S.

Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Shigemori, K.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Shiradkar, R.

Shiu, H.-W.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Shoham, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Shozaki, T.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Sidorenko, P.

P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3(1), 9 (2016).
[Crossref]

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Silbey, R. J.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Stamm, C.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Steiner, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Stolow, A.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

Suman, R.

Sunahara, A.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

Tampo, M.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Tanaka, K. A.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Thibault, P.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Tian, L.

Toyama, Y.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Tse, F.

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Tsukamoto, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Turner, D. B.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Tyliszczak, T.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Ushida, T.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Vahaplar, K.

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Vaterlaus, A.

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

Vaughan, J. C.

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Versluis, M.

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

Villanueva, F. S.

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

Waller, L.

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Wang, J.

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

Wang, L. V.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Wang, Y.-L.

Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Wilk, K. E.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Wilson, J. W.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Wong, C. Y.

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Xu, H.

Xu, W.

Yamanaka, T.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Yan, H.

Yavneh, I.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Zepf, M.

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

Zhang, B.

Zhang, S.-G.

Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

Zheng, G.

Zhu, J.

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Zhu, X.

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Zibulevsky, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105 (2013).
[Crossref]

Appl. Phys. Rev. (1)

C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: Principles and applications,” Appl. Phys. Rev. 3(1), 011102 (2016).
[Crossref]

Biomed. Opt. Express (2)

Biosystems (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2-3), 217–224 (2006).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

Y.-S. Shi, Y.-L. Wang, and S.-G. Zhang, “Generalized ptychography with diverse probes,” Chin. Phys. Lett. 30(5), 054203 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Chem. (1)

C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, and G. D. Scholes, “Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting,” Nat. Chem. 4(5), 396–404 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Sidorenko, O. Kfir, Y. Shechtman, A. Fleischer, Y. C. Eldar, M. Segev, and O. Cohen, “Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects,” Nat. Commun. 6, 8209 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nat. Phys. (1)

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7(8), 612–615 (2011).
[Crossref]

Nature (5)

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412(6849), 798–802 (2001).
[Crossref] [PubMed]

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503(7475), 209–217 (2013).
[Crossref] [PubMed]

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472(7342), 205–208 (2011).
[Crossref] [PubMed]

Opt. Express (10)

Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express 21(5), 6327–6338 (2013).
[Crossref] [PubMed]

T. M. Godden, R. Suman, M. J. Humphry, J. M. Rodenburg, and A. M. Maiden, “Ptychographic microscope for three-dimensional imaging,” Opt. Express 22(10), 12513–12523 (2014).
[Crossref] [PubMed]

P. Hessing, B. Pfau, E. Guehrs, M. Schneider, L. Shemilt, J. Geilhufe, and S. Eisebitt, “Holography-guided ptychography with soft X-rays,” Opt. Express 24(2), 1840–1851 (2016).
[Crossref] [PubMed]

P. Li, T. Edo, D. Batey, J. Rodenburg, and A. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24(8), 9038–9052 (2016).
[Crossref] [PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).
[Crossref] [PubMed]

W. Xu, H. Xu, Y. Luo, T. Li, and Y. Shi, “Optical watermarking based on single-shot-ptychography encoding,” Opt. Express 24(24), 27922–27936 (2016).
[Crossref] [PubMed]

B. Zhang, D. F. Gardner, M. H. Seaberg, E. R. Shanblatt, C. L. Porter, R. Karl, C. A. Mancuso, H. C. Kapteyn, M. M. Murnane, and D. E. Adams, “Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb,” Opt. Express 24(16), 18745–18754 (2016).
[Crossref] [PubMed]

X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22(10), 12634–12644 (2014).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

S. Dong, K. Guo, S. Jiang, and G. Zheng, “Recovering higher dimensional image data using multiplexed structured illumination,” Opt. Express 23(23), 30393–30398 (2015).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (1)

S. Cao, P. Kok, P. Li, A. M. Maiden, and J. M. Rodenburg, “Modal decomposition of a propagating matter wave via electron ptychography,” Phys. Rev. A 94(6), 063621 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

X. Zhu, A. P. Hitchcock, D. A. Bazylinski, P. Denes, J. Joseph, U. Lins, S. Marchesini, H.-W. Shiu, T. Tyliszczak, and D. A. Shapiro, “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography,” Proc. Natl. Acad. Sci. U.S.A. 113(51), E8219–E8227 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

X. Chen, J. Wang, M. Versluis, N. de Jong, and F. S. Villanueva, “Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects,” Rev. Sci. Instrum. 84(6), 063701 (2013).
[Crossref] [PubMed]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography--a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Rep. 3, 2369 (2013).
[Crossref] [PubMed]

Science (3)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003).
[Crossref] [PubMed]

Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, “Imaging precessional motion of the magnetization vector,” Science 290(5491), 492–495 (2000).
[Crossref] [PubMed]

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: diffractive imaging using coherent x-ray light sources,” Science 348(6234), 530–535 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. El-Desouki, M. J. Deen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors (Basel) 9(1), 430–444 (2009).
[Crossref] [PubMed]

Ultramicroscopy (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).
[Crossref] [PubMed]

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Other (1)

J. M. Rodenburg, “Ptychography and Related Diffractive Imaging Methods,” in Advances in Imaging and Electron Physics (2008), pp. 87–184.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of single-shot ptychographic microscope with ray tracing. Array of pinholes is located at the input plane of a 4f system. Lens L1, focuses the light beams that diffracts from the array onto the object, which is located at distance d before the back focal plane of lens L1. Lens L2 focuses the diffracted light from the object to the CCD, which is located in the output plane of the 4f system, resulting with blocks of diffraction patterns, where each block corresponds to an illuminated region in the object by the beam originating from one of the pinholes. (b) Schematic diagram of TIMP based on single-shot ptychographic microscope. The 4fSSP microscope is illuminated by a burst of several pulses. A single camera snapshot records a pattern that corresponds to the sum of the diffraction intensity patterns, where each pattern results from a different pulse. Multi-frame images, where each image corresponds to a temporal snapshot of the sample illuminated by a different pulse, are reconstructed from the single recorded pattern.
Fig. 2
Fig. 2 Numerical demonstration of TIMP with burst of spatially identical pulses for imaging the dynamics of a phase-only object. (a) Mean NMSE between the original and recovered frames as a function of the number of frames (also number of pulses) for different SNR values. (b) NMSE between diffraction patterns fed to the algorithm and the recovered diffraction patterns at each iteration of the algorithm (named NMSEF). Number of frames is encoded by the line colors and SNR values are encoded by the line dash types. (c) Exemplary reconstruction results: first horizontal panel presents original set of 6 purely phase frames, second panel presents reconstruction of the set from a noiseless diffraction pattern (green circle mark on the black curve in Fig. 2(a)) third and the bottom horizontal panels show reconstruction of the frames from data with SNR = 45 dB (green triangular mark on the purple curve in Fig. 2(a)) and from data with SNR = 25 dB (green square mark on the blue curve in Fig. 2(a)) respectively. Note, in this case the order of frames was not recovered algorithmically.
Fig. 3
Fig. 3 Numerical demonstration of TIMP for imaging the ultrafast dynamics of a complex-valued object (a) Mean NMSE between the original and recovered frames as a function of the number of frames (also number of pulses) for different SNR values. (b) NMSE between diffraction patterns fed to the algorithm and the recovered diffraction patterns at each iteration of the algorithm (named NMSEF). Number of frames is encoded by the line colors and SNR values encoded by the line dash types. (c) Exemplary reconstruction results: first horizontal panel presents original set of 6 complex frames (amplitude and phase), second panel presents reconstruction from noiseless data set (green circle mark on the black curve in Fig. 3(a)) third and the bottom horizontal panels show reconstruction of the frames from data with SNR = 45 dB (green triangular mark on the purple curve in Fig. 3(a)) and from data with SNR = 25 dB (green square mark on the blue curve in Fig. 3(a)) respectively.
Fig. 4
Fig. 4 Experimental demonstration of ultrafast single-pulse SSP. (a) A scheme of the setup. Single 150ps 800nm pulse from a ti:sapphire laser amplifier is converted in BBO crystal to 400nm pulse and illuminates a square array of 21 pinholes. The array is located at the input plane of a symmetric 4f system with f = 75mm. The object (1951 USAF resolution target) is located d = 15mm before the Fourier plane of the 4f system. The CCD is located at the output face of the 4f system. Measured diffraction patterns without (b) and with (c) the object. (d) and (e) display the reconstructed intensity and phase of the object, respectively, while (f) and (g) show the reconstructed probe beam intensity and phase, respectively.
Fig. 5
Fig. 5 Schematic diagram of BsSSP and TIMP. (a) The incoming coherent beam, which is reflected, transmitted or emitted from the object, is splitted into two arms of the BsSSP setup. In each arm, the incoming beam passes through a grating array which is described by Eq. (4). The diffracted intensity patterns are captured by cameras in the far field. The different phase factors of the gratings in the array induce sufficiently different angle of propagation for each grating, resulting in block structure of the intensity pattern on the camera. Intensity pattern in each block corresponds to the magnitude of the Fourier transform of the nearfield after each grating (Fraunhofer approximation). Thus, patterns captured by the cameras can be described by Eq. (6), which resembles the form of ptychographic measurements. Partial overlap between sections contributing to different diffraction patterns is obtained by introducing a transversal shift between the GAs. (b) Schematic diagram of TIMP based on BsSSP.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I m (ν)= | F[ P(r R m )O(r) ] | 2
I m (ν)= k=1 K | F[ P(r R m ) O k (r) ] | 2
I m (ν)= k=1 K | F[ P k (r R m ) O k (r) ] | 2
G m (r)= m=1 M G ^ (r R m )exp(i k m r)
I(ν)= | F[ P(r) m=1 M G ^ (r R m )exp(i k m r) ] | 2
I m (ν)= | F[ P(r) G ^ (r R m ) ] | 2

Metrics