Abstract

Large surface gradient and extensive mid-to-high spatial frequency in continuous phase plates (CPPs) with small structures make it difficult to achieve high-precision fabrication. An ion beam figuring (IBF) technology to fabricate CPPs with such characteristics is proposed in this paper. In order to imprint CPP microstructures with smaller spatial periods even down to 1mm in shorter time, we present a multi-pass IBF approach with different ion beam sizes based on the frequency filtering method. We discuss the selection principle and when to reduce ion beam sizes for different procedures to control dwell time and adequately exert the corrective capability in detail. This filtering method can obtains better surface quality in a faster way compared to the non filtering traditional IBF method. The experimental results verify this optimized method can effectively imprint complex microstructures with spatial period as small as 0.7 mm, surface peak-to-valleys (PV) smaller than 200nm and surface gradient as large as 1.8μm/cm to within 10 nm root-mean-square (RMS) of design specifications, which displays the advantages of our fabrication method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Edge effect correction using ion beam figuring

Bing Yang, Xuhui Xie, Furen Li, and Lin Zhou
Appl. Opt. 56(32) 8950-8958 (2017)

Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology

Furen Li, Xuhui Xie, Guipeng Tie, Hao Hu, and Lin Zhou
Appl. Opt. 56(25) 7130-7137 (2017)

Study on an effective one-dimensional ion-beam figuring method

Tianyi Wang, Lei Huang, Matthew Vescovi, Dennis Kuhne, Kashmira Tayabaly, Nathalie Bouet, and Mourad Idir
Opt. Express 27(11) 15368-15381 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47(10), 1465–1469 (2008).
    [Crossref] [PubMed]
  2. Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
    [Crossref]
  3. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21(21), 1715–1717 (1996).
    [Crossref] [PubMed]
  4. R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
    [Crossref]
  5. J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
    [Crossref]
  6. M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
    [Crossref]
  7. J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).
  8. M. Xu, Y. Dai, X. Xie, L. Zhou, and W. Liao, “Structure optimization and fabricating capability analysis of an ion-beam machine for a subnanometer optical surface,” Appl. Opt. 54(27), 8055–8061 (2015).
    [Crossref] [PubMed]
  9. W. Liao, Y. Dai, X. Xie, and L. Zhou, “Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces,” Opt. Express 22(1), 377–386 (2014).
    [Crossref] [PubMed]
  10. X. Xie, L. Zhou, Y. Dai, and S. Li, “Ion beam machining error control and correction for small scale optics,” Appl. Opt. 50(27), 5221–5227 (2011).
    [Crossref] [PubMed]
  11. W. Liao, Y. Dai, X. Xie, L. Zhou, and Z. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirror s,” Opt. Eng. 51(3), 033402 (2012).
    [Crossref]
  12. C. Yang, H. Yan, J. Wang, and R. Zhang, “A novel design method for continuous-phase plate,” Opt. Express 21(9), 11171–11180 (2013).
    [Crossref] [PubMed]
  13. W. Liao, “Fundamental research on ion beam figuring for sub-nanometer precision optical surfaces,” Ph.D. Dissertation, National University of Defense Technology (2015).
  14. S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
    [Crossref]
  15. Y. Lu, X. Xie, and L. Zhou, “Design and performance analysis of an ultraprecision ion beam polishing tool,” Appl. Opt. 55(7), 1544–1550 (2016).
    [Crossref] [PubMed]

2016 (2)

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Y. Lu, X. Xie, and L. Zhou, “Design and performance analysis of an ultraprecision ion beam polishing tool,” Appl. Opt. 55(7), 1544–1550 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

2012 (2)

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

W. Liao, Y. Dai, X. Xie, L. Zhou, and Z. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirror s,” Opt. Eng. 51(3), 033402 (2012).
[Crossref]

2011 (1)

2008 (2)

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
[Crossref]

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47(10), 1465–1469 (2008).
[Crossref] [PubMed]

2004 (1)

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

2002 (1)

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

2001 (1)

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

1996 (1)

Brocious, W. F.

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

Dai, Y.

Dixit, S. N.

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21(21), 1715–1717 (1996).
[Crossref] [PubMed]

Dumas, P.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
[Crossref]

Feit, M. D.

Fu, S.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Genin, F. Y.

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

Hu, D.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Jia, H.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Jin, G.

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

Li, S.

Li, Y.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Liao, W.

Lu, Y.

Ma, P.

Menapace, J.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
[Crossref]

Menapace, J. A.

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

Perry, M. D.

Powell, H. T.

Shi, Q.

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Su, J.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Tan, Q.

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

Tian, X.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Tricard, M.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
[Crossref]

Wang, J.

C. Yang, H. Yan, J. Wang, and R. Zhang, “A novel design method for continuous-phase plate,” Opt. Express 21(9), 11171–11180 (2013).
[Crossref] [PubMed]

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Wang, W.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Wen, S.

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Wu, M.

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

Xie, X.

Xu, J.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Xu, M.

Xu, Q.

Xu, X.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Yan, H.

C. Yang, H. Yan, J. Wang, and R. Zhang, “A novel design method for continuous-phase plate,” Opt. Express 21(9), 11171–11180 (2013).
[Crossref] [PubMed]

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Yan, Y.

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

Yang, C.

Yuan, H.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Yuan, Z.

W. Liao, Y. Dai, X. Xie, L. Zhou, and Z. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirror s,” Opt. Eng. 51(3), 033402 (2012).
[Crossref]

Zhang, R.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

C. Yang, H. Yan, J. Wang, and R. Zhang, “A novel design method for continuous-phase plate,” Opt. Express 21(9), 11171–11180 (2013).
[Crossref] [PubMed]

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47(10), 1465–1469 (2008).
[Crossref] [PubMed]

Zhang, Y.

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Zhao, Y.

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Zheng, W.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Zhou, L.

Zhu, N.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Zhu, Q.

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Appl. Opt. (4)

High Power Laser Particle Beams (1)

S. Wen, Q. Shi, H. Yan, Y. Zhang, C. Yang, and J. Wang, “Surface measurement and evaluation of large-aperture continuous phase plates,” High Power Laser Particle Beams 24(10), 2296–2300 (2012).
[Crossref]

Opt. Eng. (1)

W. Liao, Y. Dai, X. Xie, L. Zhou, and Z. Yuan, “Corrective capability analysis and machining error control in ion beam figuring of high-precision optical mirror s,” Opt. Eng. 51(3), 033402 (2012).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (2)

R. Zhang, H. Jia, X. Tian, H. Yuan, N. Zhu, J. Su, D. Hu, Q. Zhu, and W. Zheng, “Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing,” Opt. Lasers Eng. 85, 38–47 (2016).
[Crossref]

Q. Tan, Y. Yan, G. Jin, and M. Wu, “Large aperture continuous phase diffractive optical element to realize uniform focal spot,” Opt. Lasers Eng. 35(3), 165–175 (2001).
[Crossref]

Opt. Lett. (1)

Opt. Technol. (1)

J. Xu, Y. Zhao, W. Wang, Y. Li, X. Xu, and S. Fu, “Design and fabrication of diffractive optical elements for ion beam moving etching technology,” Opt. Technol. 28(4), 345–350 (2002).

Proc. SPIE (2)

J. A. Menapace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220–230 (2004).
[Crossref]

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using Magnetorheological Finishing,” Proc. SPIE 7062, 70620V (2008).
[Crossref]

Other (1)

W. Liao, “Fundamental research on ion beam figuring for sub-nanometer precision optical surfaces,” Ph.D. Dissertation, National University of Defense Technology (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The IBF removal functions with different sizes used in the figuring process.
Fig. 2
Fig. 2 The MRF removal function. Full width at half height (FWHH) and full length at half height (FLHH) are the metrics used to define the removal function.
Fig. 3
Fig. 3 The simulation results of residual error for different surface gradient. (a) the ion beam diameter d = 5mm; (b) the spatial wavelength λ = 5mm.
Fig. 4
Fig. 4 Selection principle of different ion beams according to the PSD analysis of CPP surface.
Fig. 5
Fig. 5 Comparison of machining errors of the two figuring methods. (a) the desired CPP surface; (b) low frequencies to be figured; (c) high frequencies residual (a-b); (d) residual error outputof the IBF simulation of the image b; (e) total expected residual error (c + d); (f) total residual error after the direct figuring process.
Fig. 6
Fig. 6 Comparison of the dwell time density functions. (a) the original surface errors, (b) dwell time density function of the direct process, (c) dwell time density function of the filtering method.
Fig. 7
Fig. 7 The detailed IBF machining process for CPPs.
Fig. 8
Fig. 8 Surface accuracy of the figured CPP. (a) the desired CPP surface, (b) the final figured CPP surface, (c)the final residual error, (d) surface gradient distribution of the desired CPP, (e) surface gradient distribution of the final figured CPP, (f) 3D view of the final figured CPP, (g) the plane surface outside the ellipse area.
Fig. 9
Fig. 9 PSD analysis of CPP surface during IBF process. (a) the matching errors, (b) the figured CPP surface.
Fig. 10
Fig. 10 Stability test of ion beam. (a) the spot method, (b) the shape stability, (c) the intensity stability.
Fig. 11
Fig. 11 machining errors caused by the alignment error of (δx, δy) = (50µm, 50µm).

Tables (4)

Tables Icon

Table 1 The parameters of removal function with different diameters.

Tables Icon

Table 2 The first figuring stage (beam diameter d = 8.2mm fc = 0.25mm−1).

Tables Icon

Table 3 The second figuring stage (beam diameter d = 4.1mm fc = 0.5mm−1).

Tables Icon

Table 4 The third figuring stage (beam diameter d = 3.1mm fc = 0.66mm−1).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f c = 3 2ln10 / π d 6σ .
d 6σ 2.5 d FWHM 2 λ c .
E λ (x)= A λ (sin( 2πx /λ )+1).
e(x)= A λ ( e ( πd /λ ) 2 / 18 1).
e(x)=( λ/ 2π ) G max ( e ( πd /λ ) 2 / 18 1).
k= RM S E / RM S HE .
{ 1.5<k<6 Δk/k<5% .
min(f(x))= 1 m i=1 m ( A i B i ) 2 .

Metrics