Abstract

We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 22(13) 16595-16605 (2014)

Multi-spectral terahertz sensing: proposal for a coupled-cavity quantum cascade laser based optical feedback interferometer

Xiaoqiong Qi, Gary Agnew, Iman Kundu, Thomas Taimre, Yah Leng Lim, Karl Bertling, Paul Dean, Andrew Grier, Alexander Valavanis, Edmund H. Linfield, A. Giles Davies, Dragan Indjin, and Aleksandar D. Rakić
Opt. Express 25(9) 10153-10165 (2017)

Terahertz photonic crystal quantum cascade lasers

Hua Zhang, L. Andrea Dunbar, Giacomo Scalari, Romuald Houdré, and Jérôme Faist
Opt. Express 15(25) 16818-16827 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  2. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
    [Crossref]
  3. L. Li, I. Kundu, P. Dean, E. H. Linfield, and A. G. Davies, “High-power GaAs/AlGaAs quantum cascade lasers with emission in the frequency range 4.7–5.6 THz,” in International Quantum Cascade Lasers School and Workshop (2016).
  4. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref] [PubMed]
  6. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  7. H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
    [Crossref]
  8. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 2587–2589 (2011).
    [Crossref] [PubMed]
  9. H. W. Hubers, “Terahertz Heterodyne Receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
    [Crossref]
  10. M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
    [Crossref]
  11. D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
    [Crossref]
  12. N. Han, A. de Geofroy, D. P. Burghoff, C. W. I. Chan, A. W. M. Lee, J. L. Reno, and Q. Hu, “Broadband all-electronically tunable MEMS terahertz quantum cascade lasers,” Opt. Lett. 39(12), 3480–3483 (2014).
    [Crossref] [PubMed]
  13. D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
    [Crossref]
  14. F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
    [Crossref]
  15. M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
    [Crossref]
  16. K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
    [Crossref]
  17. I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
    [Crossref] [PubMed]
  18. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, Second, Wiley Series in Microwave and Optical Engineering (John Wiley & Sons, 2012).
  19. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [Crossref]
  20. S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
    [Crossref]
  21. I. Kundu, P. Dean, A. Valavanis, L. Li, Y. Han, E. H. Linfield, and A. G. Davies, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K. are preparing a manuscript to be called “Frequency tunability and spectral control in terahertz quantum cascade lasers with phase adjusted finite defect site photonic lattice.”
  22. I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Dataset associated with Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” University of Leeds data repository (2016).
    [Crossref]
  23. H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
    [Crossref]
  24. Paul Harrison and Alexander Valavanis, Quantum Wells, Wires and Dots - Theoretical and Computational Physics of Semiconductor Nanostructures, Fourth Edition (John Wiley & Sons, 2015).
  25. COMSOL AB, COMSOL Multiphysics (R) Version 4.4 - Heat Transfer Module User’s Guide (2013).
  26. C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14(1), 171–181 (2006).
    [Crossref] [PubMed]
  27. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, Circuits, Devices and Systems Series No. 10 (The Institution of Electrical Engineers, London, 1998).

2016 (1)

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

2015 (2)

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

2014 (3)

2013 (1)

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (2)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

2008 (1)

H. W. Hubers, “Terahertz Heterodyne Receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (3)

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14(1), 171–181 (2006).
[Crossref] [PubMed]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

2000 (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

Alton, J.

Amanti, M. I.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Ban, D.

Barbieri, S.

Beck, M.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Beere, H. E.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14(1), 171–181 (2006).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Bianchi, V.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

Boylan, K.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

Burghoff, D. P.

Cao, J. C.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Castellano, F.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Chakraborty, S.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

Chakraborty, T.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

Chan, C. W. I.

Chen, L.

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

Cunningham, J. E.

Davies, A. G.

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 2587–2589 (2011).
[Crossref] [PubMed]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

de Geofroy, A.

Dean, P.

Dupont, E.

Faist, J.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Fathololoumi, S.

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Fowler, J.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Giles Davies, A.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

Grahn, H. T.

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

Guo, X. G.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Han, N.

Han, Y. J.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Harrison, P.

Hegarty, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

Hempel, M.

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

Houghton, M.

Hu, Q.

Hubers, H. W.

H. W. Hubers, “Terahertz Heterodyne Receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

Hübers, H.-W.

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

Ikonic, Z.

Indjin, D.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Jirauschek, C.

Khanna, S. P.

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 2587–2589 (2011).
[Crossref] [PubMed]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

Kliese, R.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kundu, I.

Lachab, M.

Laframboise, S. R.

Lee, A. W. M.

Li, H.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Li, L.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

Lim, Y. L.

Linfield, E. H.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities,” Opt. Express 22(13), 16595–16605 (2014).
[Crossref] [PubMed]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 2587–2589 (2011).
[Crossref] [PubMed]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

Mahler, L.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

Mátyás, A.

McDonald, D.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

Nikolic, M.

O’Gorman, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

Pavlov, S. G.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

Rakic, A. D.

Reno, J. L.

Richter, H.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, “Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz,” Opt. Express 14(1), 171–181 (2006).
[Crossref] [PubMed]

Ritchie, D. A.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Röben, B.

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Schrottke, L.

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

Semenov, A. D.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

Sirtori, C.

Tan, Z. Y.

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Turcinková, D.

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

Valavanis, A.

Vitiello, M. S.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

Walther, C.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Wasilewski, Z. R.

Weldon, V.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

Worrall, C.

Worrall, C. H.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

Zhu, J.

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (5)

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett. 89(6), 061115 (2006).
[Crossref]

D. Turčinková, M. I. Amanti, F. Castellano, M. Beck, and J. Faist, “Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition,” Appl. Phys. Lett. 102(18), 181113 (2013).
[Crossref]

D. Turčinková, M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity,” Appl. Phys. Lett. 106(13), 131107 (2015).
[Crossref]

F. Castellano, V. Bianchi, L. Li, J. Zhu, A. Tredicucci, E. H. Linfield, A. Giles Davies, and M. S. Vitiello, “Tuning a microcavity-coupled terahertz laser,” Appl. Phys. Lett. 107(26), 261108 (2015).
[Crossref]

M. Hempel, B. Röben, L. Schrottke, H.-W. Hübers, and H. T. Grahn, “Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination,” Appl. Phys. Lett. 108(19), 191106 (2016).
[Crossref]

Electron. Lett. (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett. 42(7), 404–405 (2006).
[Crossref]

IEE Proc., Optoelectron. (1)

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 μm,” IEE Proc., Optoelectron. 148(1), 19–24 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. W. Hubers, “Terahertz Heterodyne Receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. S. Vitiello and A. Tredicucci, “Tunable Emission in THz Quantum Cascade Lasers,” IEEE Trans. Terahertz Sci. Technol. 1(1), 76–84 (2011).
[Crossref]

J. Phys. Appl. Phys. (1)

H. Li, J. C. Cao, Y. J. Han, Z. Y. Tan, and X. G. Guo, “Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers,” J. Phys. Appl. Phys. 42(20), 205102 (2009).
[Crossref]

Laser Photonics Rev. (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1-2), 45–66 (2009).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Other (7)

L. Li, I. Kundu, P. Dean, E. H. Linfield, and A. G. Davies, “High-power GaAs/AlGaAs quantum cascade lasers with emission in the frequency range 4.7–5.6 THz,” in International Quantum Cascade Lasers School and Workshop (2016).

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, Second, Wiley Series in Microwave and Optical Engineering (John Wiley & Sons, 2012).

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers, Circuits, Devices and Systems Series No. 10 (The Institution of Electrical Engineers, London, 1998).

Paul Harrison and Alexander Valavanis, Quantum Wells, Wires and Dots - Theoretical and Computational Physics of Semiconductor Nanostructures, Fourth Edition (John Wiley & Sons, 2015).

COMSOL AB, COMSOL Multiphysics (R) Version 4.4 - Heat Transfer Module User’s Guide (2013).

I. Kundu, P. Dean, A. Valavanis, L. Li, Y. Han, E. H. Linfield, and A. G. Davies, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K. are preparing a manuscript to be called “Frequency tunability and spectral control in terahertz quantum cascade lasers with phase adjusted finite defect site photonic lattice.”

I. Kundu, P. Dean, A. Valavanis, L. Chen, L. H. Li, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Dataset associated with Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice,” University of Leeds data repository (2016).
[Crossref]

Supplementary Material (1)

NameDescription
» Dataset 1       Open access research data

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of a CC THz QCL. (b) Illustration of Vernier selection in a CC THz QCL with a Fr~137 GHz and CSR of 2.7. Normalized transmission in the lasing (red) and the tuning (blue) cavities are shown as the index is varied in: (i-iv) the tuning cavity only, and (v) both cavities. The resonant CC modes are marked as 1 to 3 and 1’ to 3′, and the off-resonance modes are marked as A to D. (c) Simulated transmission and discrete tuning (mode hopping) when the lasing cavity is driven with 2-µs-wide pulses (PLasing = 4.5 W) as a function of PTuning (10-µs-wide pulses). Mode transitions from mode 1 through to mode 3′ are marked. Modes 1 and 3′ are separated by ~11 GHz.
Fig. 2
Fig. 2 (a) Schematic of the synchronization of the electrical pulses used to drive the lasing (red) and the tuning (blue) cavities. (b) Simulated temporal variation of the lattice temperature in the lasing and the tuning cavities for 2-µs-wide lasing pulses (PLasing = 4 W), and both 20-µs and 95-µs-wide tuning pulses (PTuning = 5 W). (c) Peak lattice temperature simulated at the center of the lasing (red) and the tuning (blue) cavities as a function of the width of pulses supplied to the tuning cavity. (d) Simulated discrete tuning (mode hopping) when the lasing cavity is driven with 2-µs-wide pulses (PLasing = 4.5 W) and the tuning cavity is driven with 95-µs-wide pulses, as a function of PTuning. (e) Simulated continuous tuning of the CC modes between 2.235 and 2.260 THz for combinations of different PTuning (95-µs-wide 0-8 W; y-axis) and the PLasing (3-6 W; colored spectra).
Fig. 3
Fig. 3 Experimental data obtained at a heat sink temperature of 6 K: (a) LIV (peak THz power) characteristics of the lasing section with the tuning section grounded. THz radiation is collected from the front facet of the lasing section. (b) Experimentally observed spectra when the lasing cavity is driven with 2-µs-wide pulses (peak power 4.1 W), and the tuning cavity is driven with 95-µs-wide pulses. (c) Spectral coverage of the device with discrete frequency tuning extending from 2.185 to 2.285 THz. Spectra have been normalized and offset. (Inset): SMSR from two representative spectral lines (red and blue), and quasi-continuous tuning of ~5, 7, and 4 GHz centered at ~2.22, 2.25, and 2.85 THz respectively.
Fig. 4
Fig. 4 (a) Illustration of a PL incorporated in the lasing cavity of the CC QCL. Inset: Scanning electron micrograph of the PL formed by focused-ion beam milling. (b) Simulated emission spectra of the CC device with PL, as a function of the peak electrical power supplied to the tuning cavity (95-µs-wide pulses) (c) Experimental spectra obtained at a heat sink temperature of 6 K showing an improved SMSR of 40 dB. Inset: Weighted mean of the spectral power distribution (red circle) and variation of output power from the lasing section (blue plus) as a function of the peak electrical power supplied to the tuning cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ c p (T, T D ) T t =[ κ(T)T ]+Q(t)

Metrics