Abstract

We propose a RF-pilot aided modulation format identification (MFI) technique to enable a hitless flexible coherent transceiver with fast format switching. For the MFI, modulation format information is encoded to the amplitude of the RF-pilot, which can be simultaneously used for the compensation of both laser phase noise and fiber nonlinearity. The proposed MFI technique is able to identify arbitrary modulation formats including multi-dimensional formats and hybrid QAM formats. The high accuracy of the proposed MFI scheme is experimentally demonstrated without sacrificing the tolerance of both laser phase noise and fiber nonlinearity for various modulation formats up to dual-polarization (DP) 64QAM. Finally, over 2240 km standard single mode fiber (SSMF) link, we experimentally demonstrate a hitless coherent transceiver with a fast block-by-block modulation format switching enabled by the proposed MFI.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulation format identification aided hitless flexible coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xingyu Zhou, Fangyuan Zhang, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 24(14) 15642-15655 (2016)

Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver

Songnian Fu, Zuying Xu, Jianing Lu, Hexun Jiang, Qiong Wu, Zhouyi Hu, Ming Tang, Deming Liu, and Calvin Chun-Kit Chan
Opt. Express 26(6) 7288-7296 (2018)

Modulation format identification assisted by sparse-fast-Fourier-transform for hitless flexible coherent transceivers

Jianing Lu, Zhongwei Tan, Alan Pak Tao Lau, Songnian Fu, Ming Tang, and Chao Lu
Opt. Express 27(5) 7072-7086 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index: forecast and methodology, 2013–2018. [Online] Available at ( http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).
  2. K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper. We.3.A.3.
    [Crossref]
  3. Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, M. Qiu, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [Crossref]
  4. Z. Zhang and C. Li, “Hitless multi-rate coherent transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.
  5. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
    [Crossref] [PubMed]
  6. V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  7. R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
    [Crossref] [PubMed]
  8. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
    [Crossref]
  9. P. Isautier, A. Stark, P. Jie, K. Mehta, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.
  10. P. Isautier, J. Pan, R. DeSalvo, and S. E. Ralph, “Stokes space-based modulation format recognition for autonomous optical receivers,” J. Lightwave Technol. 33(24), 5157–5163 (2015).
    [Crossref]
  11. J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
    [Crossref]
  12. F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
    [Crossref]
  13. S. M. Bilal, G. Bosco, Z. Dong, A. P. T. Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
    [Crossref] [PubMed]
  14. J. K. Fischer, C. Schmidt-Langhorst, S. Alreesh, R. Elschner, F. Frey, P. W. Berenguer, L. Molle, M. Nölle, and C. Schubert, “Generation, transmission and detection of 4D set-partitioning QAM Signals,” J. Lightwave Technol. 33(7), 1445–1451 (2015).
    [Crossref]
  15. P. Isautier, J. Pan, J. Langston, R. DeSalvo, and S. E. Ralph, “Autonomous receivers for complex format identification and demodulation,” in Proceedings of AVFOP (2014), paper TuB2.
    [Crossref]
  16. Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
    [Crossref] [PubMed]
  17. M. Morsy-Osman, Q. Zhuge, L. R. Chen, and D. V. Plant, “Feedforward carrier recovery via pilot-aided transmission for single-carrier systems with arbitrary M-QAM constellations,” Opt. Express 19(24), 24331–24343 (2011).
    [Crossref] [PubMed]
  18. T. Kobayashi, A. Sano, A. Masuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” J. Lightwave Technol. 30(24), 3805–3815 (2012).
    [Crossref]
  19. S. M. Bilal and G. Bosco, “Pilot tones based polarization rotation, frequency offset and phase estimation for polarization multiplexed offset-QAM multi-subcarrier coherent optical systems,” in Proceedings of ICTON (2016), paper Mo.B1.6.
    [Crossref]
  20. G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
    [Crossref] [PubMed]
  21. M. Qiu, Q. Zhuge, M. Chagnon, Y. Gao, X. Xu, M. Morsy-Osman, and D. V. Plant, “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express 22(15), 18770–18777 (2014).
    [Crossref] [PubMed]
  22. M. Xiang, S. Fu, L. Deng, M. Tang, P. Shum, and D. Liu, “Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation,” Opt. Express 23(15), 19142–19153 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

2014 (1)

2013 (3)

Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, M. Qiu, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

2012 (2)

2011 (2)

Al-Arashi, W. H.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Alreesh, S.

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Berenguer, P. W.

Bilal, S. M.

Boada, R.

Borkowski, R.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Bosco, G.

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Chagnon, M.

Chen, L. R.

Deng, L.

DeSalvo, R.

Dong, Z.

El-Sahn, Z. A.

Elschner, R.

Fischer, J. K.

Frey, F.

Friberg, A. T.

Fu, S.

Gao, Y.

Isautier, P.

Ishihara, K.

Jacobsen, G.

Khan, F. N.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Kobayashi, T.

Lau, A. P. T.

S. M. Bilal, G. Bosco, Z. Dong, A. P. T. Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
[Crossref] [PubMed]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Li, J.

Liu, D.

Lu, C.

S. M. Bilal, G. Bosco, Z. Dong, A. P. T. Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
[Crossref] [PubMed]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Masuura, A.

Mello, D. A.

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Miyamoto, Y.

Molle, L.

Monroy, I. T.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Nölle, M.

Pan, J.

Plant, D. V.

Popov, S.

Qiu, M.

Ralph, S. E.

Rozental, V. N.

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Sano, A.

Schmidt-Langhorst, C.

Schubert, C.

Shum, P.

Tang, M.

Xiang, M.

Xu, T.

Xu, X.

Yu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Zhang, F.

Zhang, Y.

Zhong, K.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

Zhou, X.

Zhuge, Q.

Zibar, D.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

IEEE Photonics J. (1)

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2013).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (8)

M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
[Crossref] [PubMed]

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

M. Xiang, S. Fu, L. Deng, M. Tang, P. Shum, and D. Liu, “Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation,” Opt. Express 23(15), 19142–19153 (2015).
[Crossref] [PubMed]

S. M. Bilal, G. Bosco, Z. Dong, A. P. T. Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
[Crossref] [PubMed]

M. Qiu, Q. Zhuge, M. Chagnon, Y. Gao, X. Xu, M. Morsy-Osman, and D. V. Plant, “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express 22(15), 18770–18777 (2014).
[Crossref] [PubMed]

G. Jacobsen, T. Xu, S. Popov, J. Li, A. T. Friberg, and Y. Zhang, “Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems,” Opt. Express 19(15), 14487–14494 (2011).
[Crossref] [PubMed]

M. Morsy-Osman, Q. Zhuge, L. R. Chen, and D. V. Plant, “Feedforward carrier recovery via pilot-aided transmission for single-carrier systems with arbitrary M-QAM constellations,” Opt. Express 19(24), 24331–24343 (2011).
[Crossref] [PubMed]

Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A. El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL,” Opt. Express 20(17), 19599–19609 (2012).
[Crossref] [PubMed]

Other (7)

P. Isautier, J. Pan, J. Langston, R. DeSalvo, and S. E. Ralph, “Autonomous receivers for complex format identification and demodulation,” in Proceedings of AVFOP (2014), paper TuB2.
[Crossref]

S. M. Bilal and G. Bosco, “Pilot tones based polarization rotation, frequency offset and phase estimation for polarization multiplexed offset-QAM multi-subcarrier coherent optical systems,” in Proceedings of ICTON (2016), paper Mo.B1.6.
[Crossref]

Cisco Visual Networking Index: forecast and methodology, 2013–2018. [Online] Available at ( http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).

K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper. We.3.A.3.
[Crossref]

Z. Zhang and C. Li, “Hitless multi-rate coherent transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.

P. Isautier, A. Stark, P. Jie, K. Mehta, and S. E. Ralph, “Autonomous software-defined coherent optical receivers performing modulation format recognition in stokes-space,” in Proceedings of OFC (2014), paper OTh3B.4.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Extracted phase and amplitude of the received RF-pilot. PSR = 15 dB.
Fig. 2
Fig. 2 Experimental setup and DSP flow. SW: switch.
Fig. 3
Fig. 3 (a) Laser linewidth tolerance under B2B transmissions. (b) BER versus launch power for DP-8QAM, DP-16QAM, SP-512-QAM and DP-64QAM after 5760km, 2880 km, 1920 km and 640 km SSMF transmission, respectively. PSR = 15 dB.
Fig. 4
Fig. 4 BER as a function of PSR for DP-16QAM signals after 1920 km SSMF transmissions.
Fig. 5
Fig. 5 Back-to-back performance for DP-16QAM, SP-512-QAM and DP-64QAM.
Fig. 6
Fig. 6 (a) BER versus launch power for DP-16QAM, SP-512-QAM and DP-64QAM after 1920 km, 960 km and 320 km SSMF transmission, respectively. (b) BER versus transmission distance under the optimal launch power.
Fig. 7
Fig. 7 (a) BER and SNR versus block index for interleaved DP-8QAM, DP-16QAM and SP-128-QAM blocks. BER and SNR are shown in black squares and blue circles, respectively. (b) Corresponding amplitude symbols of the received RF-pilot.
Fig. 8
Fig. 8 (a) Probability of false identification versus OSNR for back-to-back DP-16QAM transmissions. (b) Probability of correct MFI versus SSMF transmission distance for DP-16QAM signals with 1000 times identification.

Tables (1)

Tables Icon

Table 1 An example of a modulation format encoding table given 4-bit information.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P MFI =1 ( 1 P M ) 4 , P M =0.5erfc( R AM 1 2 SNRM 1+ R AM 2 )

Metrics