Abstract

Fiber Bragg gratings (FBGs) in a hollow eccentric fiber (HEF) have been proposed and demonstrated experimentally. The single-core and two-core HEF FBGs have been inscribed successfully using KrF excimer laser (248 nm), respectively. The temperature and axial strain sensing properties of the two samples have been measured. The experimental results indicate that the temperature and axial strain sensitivities of the two samples are similar, but they are smaller than that of conventional SMF-FBGs. Furthermore, the bending characteristics of the two-core HEF-FBG strongly depend on the bending direction due to the asymmetry of the fiber. Therefore, the proposed two-core HEF-FBGs facilitate temperature-compensated vector-bending sensing by measuring the difference between peak shifts of the two gratings. In addition, the two-core HEF-FBG can be a promising candidate for achieving two-channel filter since the signal crosstalk between the two cores can be largely eliminated by the central air hole.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long period fiber grating in two-core hollow eccentric fiber

Tingting Yuan, Xing Zhong, Chunying Guan, Jianan Fu, Jing Yang, Jinhui Shi, and Libo Yuan
Opt. Express 23(26) 33378-33385 (2015)

Bending characteristics of a long-period fiber grating in a hollow eccentric optical fiber

Xing Zhong, Chunying Guan, Guopei Mao, Jianan Fu, Yang Liu, Jinhui Shi, and Libo Yuan
Appl. Opt. 54(26) 7879-7883 (2015)

Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers

Ningliang Liu, Yuhua Li, Ying Wang, Haiyan Wang, Wenbin Liang, and Peixiang Lu
Opt. Express 19(15) 13880-13891 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  4. J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
    [Crossref] [PubMed]
  5. W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
    [Crossref]
  6. X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
    [Crossref]
  7. W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [Crossref] [PubMed]
  8. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
    [Crossref] [PubMed]
  9. Y. Wang, H. Bartelt, M. Becker, S. Brueckner, J. Bergmann, J. Kobelke, and M. Rothhardt, “Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers,” Appl. Opt. 48(11), 1963–1968 (2009).
    [Crossref] [PubMed]
  10. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
    [Crossref] [PubMed]
  11. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express 14(22), 10359–10370 (2006).
    [Crossref] [PubMed]
  12. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [Crossref] [PubMed]
  13. Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
    [Crossref] [PubMed]
  14. Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
    [Crossref]
  15. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  16. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
    [Crossref] [PubMed]
  17. T. Yuan, X. Zhong, C. Guan, J. Fu, J. Yang, J. Shi, and L. Yuan, “Long period fiber grating in two-core hollow eccentric fiber,” Opt. Express 23(26), 33378–33385 (2015).
    [Crossref] [PubMed]
  18. C. Guan, F. Tian, Q. Dai, and L. Yuan, “Characteristics of embedded-core hollow optical fiber,” Opt. Express 19(21), 20069–20078 (2011).
    [Crossref] [PubMed]
  19. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  20. Y. J. Rao, L. Zhang, I. Bennion, A. B. Lobo Ribeiro, and D. A. Jackson, “Combined spatial- and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection,” Opt. Lett. 20(20), 2149–2151 (1995).
    [Crossref] [PubMed]
  21. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
    [Crossref]
  22. C. Y. Guan, X. Z. Tian, J. H. Shi, Q. Dai, F. J. Tian, and L. B. Yuan, “Experimental and theoretical investigations of bending loss and birefringence in embedded-core hollow fiber,” J. Lightwave Technol. 30(19), 3142–3146 (2012).
    [Crossref]
  23. J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
    [Crossref]

2016 (1)

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (4)

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

C. Y. Guan, X. Z. Tian, J. H. Shi, Q. Dai, F. J. Tian, and L. B. Yuan, “Experimental and theoretical investigations of bending loss and birefringence in embedded-core hollow fiber,” J. Lightwave Technol. 30(19), 3142–3146 (2012).
[Crossref]

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

2011 (1)

2010 (2)

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

2009 (2)

2007 (2)

2006 (2)

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, “Tilted fiber Bragg grating photowritten in microstructured optical fiber for improved refractive index measurement,” Opt. Express 14(22), 10359–10370 (2006).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

2005 (2)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
[Crossref] [PubMed]

1995 (1)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1989 (2)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Auguste, J.-L.

Bartelt, H.

Becker, M.

Bennion, I.

Bergmann, J.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Blanc, W.

Brambilla, G.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Brueckner, S.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Canning, J.

Chen, K. P.

Chen, X.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Chen, Y.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

Cheng, C.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Cho, H. S.

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Dai, Q.

Dewynter, V.

Ding, M.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Dussardier, B.

Ecke, W.

Feng, J.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Ferdinand, P.

Fu, J.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gao, R.

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Glenn, W. H.

Grobnic, D.

Guan, C.

Guan, C. Y.

Han, Y. G.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Jackson, D. A.

Jeong, C. H.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Jewart, C. M.

Jiang, Y.

Jin, L.

Jin, W.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Kalli, K.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Kang, H. J.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Kim, G. H.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Kobelke, J.

Kong, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Kou, J. L.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

Labonté, L.

Laffont, G.

Lee, J. H.

Lee, K.

Lee, S. B.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Lee, Y. J.

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Liu, X.

Lobo Ribeiro, A. B.

Lu, C.

Lu, F.

Lu, Y. Q.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Luo, W.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Meltz, G.

Mihailov, S. J.

Moerl, K.

Morey, W. W.

Ng, J.

Oh, C. H.

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

Pagnoux, D.

Peng, G.

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Phan Huy, M. C.

Rao, Y. J.

Rothhardt, M.

Roy, P.

Schroeder, K.

Shan, L.

Shi, J.

Shi, J. H.

Song, S.

Spittel, R.

Tan, X.

Tian, F.

Tian, F. J.

Tian, X. Z.

Wang, Q.

Wang, Y.

Webb, D.

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Willsch, R.

Xu, F.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Yang, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

T. Yuan, X. Zhong, C. Guan, J. Fu, J. Yang, J. Shi, and L. Yuan, “Long period fiber grating in two-core hollow eccentric fiber,” Opt. Express 23(26), 33378–33385 (2015).
[Crossref] [PubMed]

Yang, X.

Yuan, L.

Yuan, L. B.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

C. Y. Guan, X. Z. Tian, J. H. Shi, Q. Dai, F. J. Tian, and L. B. Yuan, “Experimental and theoretical investigations of bending loss and birefringence in embedded-core hollow fiber,” J. Lightwave Technol. 30(19), 3142–3146 (2012).
[Crossref]

Yuan, T.

Zhang, C.

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Zhang, L.

Zhang, W.

Zhao, Y.

Zhong, X.

Zhou, A.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Zhou, X.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Chen, C. Zhang, D. Webb, K. Kalli, and G. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18(16), 1783–1785 (2006).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonunifrom thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. B. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (9)

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

Y. J. Rao, L. Zhang, I. Bennion, A. B. Lobo Ribeiro, and D. A. Jackson, “Combined spatial- and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection,” Opt. Lett. 20(20), 2149–2151 (1995).
[Crossref] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J.-L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref] [PubMed]

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

W. Zhang, D. Webb, and G. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[Crossref] [PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-section pictures of the HEFs. (a) Single-core HEF and (b) two-core HEF.
Fig. 2
Fig. 2 Schematic of the HEF-FBG fabrication by the phase-mask technique.
Fig. 3
Fig. 3 The measured transmission spectra of the two samples. (a) Single-core HEF-FBG and (b) two-core HEF-FBGs. The insets illustrate the exposure direction of the HEFs.
Fig. 4
Fig. 4 The measured resonant wavelength of the single-core HEF-FBG as a function of (a) the temperature and (b) the axial strain.
Fig. 5
Fig. 5 The measured resonant wavelength of the two-core HEF-FBGs as a function of (a) the temperature and (b) the axial strain.
Fig. 6
Fig. 6 (a) Schematic of the experimental setup for testing bending characteristics. (b) Illustrations of the bending direction angles.
Fig. 7
Fig. 7 (a) The measured transmission spectra for different curvatures when the core 1 is in the bending direction of 180°. (b) The resonant wavelength dependence on the curvatures for the bending directions of 0°, 90° and 180°.

Metrics