Abstract

We report a cascaded ring resonator (CRR) based, silicon photonic temperature sensor for simultaneous sensitivity and range enhancement. To achieve the dual enhancement, the proposed CRR temperature sensor employs two micro ring resonators with different temperature sensitivities and different free spectral ranges (FSRs). The differences in the temperature sensitivities and FSRs are obtained by tailoring the in-plane geometric parameters of the two ring resonators. The CRR temperature sensor was fabricated by using a single-mask complementary metal-oxide-semiconductor (CMOS)-compatible process. The experimental results demonstrated a temperature sensitivity of 293.9 pm/°C, which was 6.3 times higher than that of an individual ring resonator. The sensor was also shown to enhance the temperature sensing range by 5.3 times.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity and wide-range optical sensor based on three cascaded ring resonators

Yong Liu, Yang Li, Mingyu Li, and Jian-Jun He
Opt. Express 25(2) 972-978 (2017)

High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities

Yuguang Zhang, Penghao Liu, Senlin Zhang, Weixi Liu, Jingye Chen, and Yaocheng Shi
Opt. Express 24(20) 23037-23043 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref] [PubMed]
  2. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref] [PubMed]
  3. G. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Special Publication 250, 81 (2008).
  4. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [Crossref] [PubMed]
  5. J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
    [Crossref]
  6. S. L. Tsao and P. C. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microw. Opt. Technol. Lett. 30(5), 321–322 (2001).
    [Crossref]
  7. G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [Crossref]
  8. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).
  9. C. Ciminelli, F. Dell’Olio, C. Campanella, V. Passaro, and M. Armenise, Integrated optical ring resonators: modelling and technologies (NOVA Science Publishers, 2009).
  10. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  11. A. Kersey and T. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photonics Technol. Lett. 4(10), 1183–1185 (1992).
    [Crossref]
  12. Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
    [Crossref]
  13. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  14. Z. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, “On-fiber plasmonic interferometer for multi-parameter sensing,” Opt. Express 23(8), 10732–10740 (2015).
    [Crossref] [PubMed]
  15. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  16. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  17. X. Wang, X. Guan, Q. Huang, J. Zheng, Y. Shi, and D. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38(24), 5405–5408 (2013).
    [Crossref] [PubMed]
  18. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
    [Crossref] [PubMed]
  19. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [Crossref] [PubMed]
  20. M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [Crossref] [PubMed]
  21. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
    [Crossref] [PubMed]
  22. V. Zamora, P. Lützow, M. Weiland, and D. Pergande, “Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm,” Opt. Express 21(23), 27550–27557 (2013).
    [Crossref] [PubMed]
  23. E. S. Ferry, A Handbook of Physics Measurements: By Ervin S. Ferry. In Collaboration with OW Silvey, GW Sherman, Jr., and DC Duncan (John Wiley & Sons, 1926).
  24. C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
    [Crossref]
  25. F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
    [Crossref] [PubMed]
  26. P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5(6), 803–812 (1988).
    [Crossref]
  27. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
    [Crossref]
  28. L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
    [Crossref]
  29. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  30. L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  31. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photonics Technol. Lett. 23(13), 842–844 (2011).
    [Crossref]
  32. L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
    [Crossref] [PubMed]
  33. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
    [Crossref]
  34. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  35. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  36. E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  37. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [Crossref] [PubMed]

2015 (3)

2014 (4)

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (4)

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photonics Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

2008 (5)

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

G. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Special Publication 250, 81 (2008).

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2001 (1)

S. L. Tsao and P. C. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microw. Opt. Technol. Lett. 30(5), 321–322 (2001).
[Crossref]

1999 (1)

G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

1997 (1)

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

1992 (1)

A. Kersey and T. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photonics Technol. Lett. 4(10), 1183–1185 (1992).
[Crossref]

1991 (1)

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

1988 (1)

Adibi, A.

Ahmed, Z.

Bae, H.

Bae, H. K.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Beausoleil, R. G.

Beckx, S.

Bennion, I.

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Berger, M.

Berkoff, T.

A. Kersey and T. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photonics Technol. Lett. 4(10), 1183–1185 (1992).
[Crossref]

Bienstman, P.

Bogaerts, W.

Cai, H.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Campanella, C.

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

Campanella, C. E.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Cardenas, J.

Cheben, P.

Chen, Y.

Chin, M.-K.

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

Cocorullo, G.

G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

Dai, D.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Leonardis, F.

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Delâge, A.

Della Corte, F.

G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Densmore, A.

Dulkeith, E.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Fan, J.

Fattal, D.

Green, W. M.

Gu, Y. D.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Guan, X.

Guha, B.

Gupta, A. K.

Hafezi, M.

He, J.-J.

L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Hu, J.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photonics Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

Huang, Q.

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

Jackson, D.

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Janz, S.

Jin, L.

L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Kersey, A.

A. Kersey and T. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photonics Technol. Lett. 4(10), 1183–1185 (1992).
[Crossref]

Kim, G.-D.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Klimov, N. N.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwon, M.-S.

Lamontagne, B.

Lapointe, J.

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Li, M.

L. Jin, M. Li, and J.-J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Li, Q.

Lim, B. T.

Lim, D. C.

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

Lipson, M.

Liu, A. Q.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Liu, H.

Lützow, P.

Luyssaert, B.

McNab, S.

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Mittal, S.

Motooka, T.

Oda, K.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Olson, D. A.

Park, C.-H.

Passaro, V.

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

Passaro, V. M.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Peng, P. C.

S. L. Tsao and P. C. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microw. Opt. Technol. Lett. 30(5), 321–322 (2001).
[Crossref]

Pergande, D.

Perri, A. G.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Post, E.

Rao, Y.-J.

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Schares, L.

Schmid, J. H.

Shi, Y.

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

Soltani, M.

Steier, W. H.

Strouse, G.

G. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Special Publication 250, 81 (2008).

Strouse, G. F.

Taillaert, D.

Takato, N.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Tao, J. F.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Taylor, J. M.

Toba, H.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Tobing, L. Y.

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

Troia, B.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Tsao, S. L.

S. L. Tsao and P. C. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microw. Opt. Technol. Lett. 30(5), 321–322 (2001).
[Crossref]

Uenuma, M.

Urquhart, P.

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vlasov, Y.

Vlasov, Y. A.

Waldron, P.

Wang, X.

Webb, D. J.

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Weiland, M.

Wiaux, V.

Wu, J.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Xia, F.

Xu, D.-X.

Xu, H.

Xu, Q.

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Yegnanarayanan, S.

Yu, M.

Yun, D.

Zamora, V.

Zhang, L.

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Zhang, Z.

Zheng, J.

Appl. Phys. Lett. (2)

G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

L. Y. Tobing, D. C. Lim, P. Dumon, R. Baets, and M.-K. Chin, “Finesse enhancement in silicon-on-insulator two-ring resonator system,” Appl. Phys. Lett. 92(10), 101122 (2008).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

C. Campanella, C. Campanella, F. De Leonardis, and V. Passaro, “A high efficiency label-free photonic biosensor based on vertically stacked ring resonators,” Eur. Phys. J. Spec. Top. 223(10), 2009–2021 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Kersey and T. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photonics Technol. Lett. 4(10), 1183–1185 (1992).
[Crossref]

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a Photonic-Based Linear Temperature Sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photonics Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

J. Lightwave Technol. (4)

Y.-J. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. L. Tsao and P. C. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microw. Opt. Technol. Lett. 30(5), 321–322 (2001).
[Crossref]

NIST Special Publication (1)

G. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Special Publication 250, 81 (2008).

Opt. Commun. (1)

L. Jin, M. Li, and J.-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50, 071112 (2011).

Opt. Express (13)

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref] [PubMed]

Z. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, “On-fiber plasmonic interferometer for multi-parameter sensing,” Opt. Express 23(8), 10732–10740 (2015).
[Crossref] [PubMed]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

V. Zamora, P. Lützow, M. Weiland, and D. Pergande, “Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm,” Opt. Express 21(23), 27550–27557 (2013).
[Crossref] [PubMed]

E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
[Crossref] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Sensors (Basel) (1)

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Other (2)

E. S. Ferry, A Handbook of Physics Measurements: By Ervin S. Ferry. In Collaboration with OW Silvey, GW Sherman, Jr., and DC Duncan (John Wiley & Sons, 1926).

C. Ciminelli, F. Dell’Olio, C. Campanella, V. Passaro, and M. Armenise, Integrated optical ring resonators: modelling and technologies (NOVA Science Publishers, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the CRR temperature sensor operation. (a) Cascaded configuration of Rings 1 and 2. Transmission spectra (b) at the drop ports of the two ring resonators, and (c) at the output of the CRR. (d) Power output at the drop port of a single ring resonator as a function of wavelength and temperature.
Fig. 2
Fig. 2 (a) ∂neff/∂T, ng, and (b) temperature sensitivity of a ring resonator as a function of waveguide width. (c) FSR and (d) TP as a function of ring radius with 350 nm and 450 nm wide waveguides at the quasi-TM mode. FDTD simulation and analytical calculation were performed at 1550 nm. The waveguide thickness is 210 nm.
Fig. 3
Fig. 3 (a) FDTD simulation results of neff for Rings 1 and 2 as a function of wavelength. The waveguide thickness is 210 nm. (b) Transmission spectra of the over-coupled, critically-coupled, and under-coupled CRR sensors at the room temperature (ΔT = 0 °C). (c) Calculated temperature-induced peak shifts of the designed CRR temperature sensor and Rings 1 and 2.
Fig. 4
Fig. 4 (a) Optical microscope image of the fabricated CRR temperature sensor. SEM images of the ring and bus waveguides in the coupling region for (b) Ring 1 and (c) Ring 2.
Fig. 5
Fig. 5 (a) Normalized transmission spectra at the pass port of Rings 1 and 2 at 23.74°C. (b) Resonance wavelength shift of Rings 1 and 2 and the envelope peak shift of the CRR temperature sensor as a function of temperature. (c) and (d) Normalized transmission spectra of the CRR temperature sensor and the corresponding envelopes by the Lorentzian fit at 23.74°C and 48.46°C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

FS R CRR = FS R 1 FS R 2 FS R 1 FS R 2 .
S i =FS R i /T P i , i=1,2.
S CRR =FS R CRR /T P CRR = FS R 1 FS R 2 FS R 1 FS R 2 / T P 1 T P 2 T P 1 T P 2 = FS R 1 FS R 2 FS R 1 FS R 2 ( S 2 FS R 2 S 1 FS R 1 ).
FOM= S CRR S i T P CRR T P i = FS R CRR FS R i , i=1,2.
S= d λ res dT = λ res n g ( n eff T + n eff α Si ),
n g = n eff λ( n eff λ ).
FSR= λ res 2 n g 2πR ,

Metrics