Abstract

To quantitatively measure content connectivity and provide protection for different kinds of content, the concept of k-node (edge) content connectivity is proposed recently. Based on k-node (edge) content connectivity, k-node (edge) content connected elastic optical datacenter network (KC-EODN) is proposed to design disaster-resilient and spectrum-efficient optical datacenter networks. In KC-EODN, k independent end-to-content paths are established for each request. However, it will consume too much resource to assign dedicated spectrum for each end-to-content path. Spectrum sharing among multiple end-to-content paths of different requests can greatly improve resource efficiency. In this paper, a novel perfect matching based sharing principle among multiple end-to-content paths of different requests is proposed. Based on the new proposed sharing principle, we present the shared end-to-content backup path protection (SEBPP) scheme for KC-EODN. Integer linear program (ILP) model and heuristic algorithms are designed for SEBPP scheme with the objective of minimizing the total of working and backup spectrum resources. Numerical results show that the proposed SEBPP scheme can greatly reduce spectrum consumption while ensuring the survivability against natural disaster and multi-failures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Content Placement With Maximum Number of End-to-Content Paths in k-Node (Edge) Content Connected Optical Datacenter Networks

Xin Li, Shan Yin, Xinbo Wang, Yu Zhou, Yongli Zhao, Shanguo Huang, and Jie Zhang
J. Opt. Commun. Netw. 9(1) 53-66 (2017)

Benefit of adaptive FEC in shared backup path protected elastic optical network

Hong Guo, Hua Dai, Chao Wang, Yongcheng Li, Sanjay K. Bose, and Gangxiang Shen
Opt. Express 23(15) 20158-20175 (2015)

Optimal Design for Shared Backup Path Protected Elastic Optical Networks Under Single-Link Failure

Gangxiang Shen, Yue Wei, and Sanjay K. Bose
J. Opt. Commun. Netw. 6(7) 649-659 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Habib, M. Tornatore, M. D. Leenheer, F. Dikbiyik, and B. Mukherjee, “Design of Disaster-Resilient Optical Datacenter Networks,” J. Lightwave Technol. 30(16), 2563–2573 (2012).
    [Crossref]
  2. D. Stamatelakis and W. D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable Networks Using Preconfigured Cycles (p-cycles),” IEEE Trans. Commun. 48(8), 1262–1265 (2000).
    [Crossref]
  3. S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
    [Crossref] [PubMed]
  4. C. Ou, J. Zhang, H. Zang, L. H. Sahasrabuddhe, and B. Mukherjee, “New and Improved Approaches for Shared-Path Protection in WDM Mesh Networks,” J. Lightwave Technol. 22(5), 1223–1232 (2004).
    [Crossref]
  5. M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-Tolerant Virtual Network Mapping to Provide Content Connectivity in Optical Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2013), paper OTh3E.4.
    [Crossref]
  6. X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
    [Crossref]
  7. J. Abley and K. Lindqvist, “Operation of Anycast Services,” IETF RFC 4786 (2011), https://tools.ietf.org/html/rfc4786
  8. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  9. S. Ferdousi, F. Dikbiyik, M. F. Habib, M. Tornatore, and B. Mukherjee, “Disaster-Aware Dynamic Content Placement in Optical Cloud Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2014), paper M2H.4.
    [Crossref]
  10. C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
    [Crossref]
  11. X. Li, S. Huang, S. Yin, Y. Zhou, H. Huang, Y. Zhao, and J. Zhang, “Experimental Demonstration of Flexible Content Placement to Provide K-Content Connectivity in SDN-Enabled Data Center Optical Networks,” in Proceedings of Asia Communications and Photonics Conference (ACP2015), paper AM1H.6.
    [Crossref]
  12. A. N. Patel, P. N. Ji, P. Jason, and T. Wang, “Survivable Transparent Flexible Optical WDM (FWDM) Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2011), paper OTuI2.
    [Crossref]
  13. M. Liu, M. Tornatore, and B. Mukherjee, “Survivable Traffic Grooming in Elastic Optical Networks Shared Protection,” J. Lightwave Technol. 31(6), 903–909 (2013).
    [Crossref]
  14. G. Shen, Y. Wei, and S. K. Bose, “Optimal Design for Shared Backup Path Protected Elastic Optical Networks Under Single-Link Failure,” J. Opt. Commun. Netw. 6(7), 649–659 (2014).
    [Crossref]
  15. C. Wang, G. Shen, B. Chen, and L. Peng, “Protection Path-based Hitless Spectrum Defragmentation in Elastic Optical Networks: Shared Backup Path Protection,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2015), paper W1I.7.
    [Crossref]
  16. X. Shao, Y. K. Yeo, Z. Xu, X. Cheng, and L. Zhou, “Shared-Path Protection in OFDM-based Optical Networks with Elastic Bandwidth Allocation,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2012), paper OTh4B.4.
    [Crossref]
  17. C. Wang, G. Shen, and S. K. Bose, “Distance Adaptive Dynamic Routing and Spectrum Allocation in Elastic Optical Networks With Shared Backup Path Protection,” J. Lightwave Technol. 33(14), 2955–2964 (2015).
  18. L. Guo, L. Li, J. Cao, H. Yu, and X. Wei, “On Finding Feasible Solutions With Shared Backup Resources for Surviving Double-Link Failures in Path-Protected WDM Mesh Networks,” J. Lightwave Technol. 25(1), 287–296 (2007).
    [Crossref]
  19. L. Guo and L. Li, “A Novel Survivable Routing Algorithm With Partial Shared-Risk Link Groups (SRLG)-Disjoint Protection Based on Differentiated Reliability Constraints in WDM Optical Mesh Networks,” J. Lightwave Technol. 25(6), 1410–1415 (2007).
    [Crossref]
  20. H. Zhang, X. Zheng, Y. Li, and H. Zhang, “Availability Analysis of Shared Backup Path Protection Subject to SRLG Constraints in WDM Mesh Networks,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC2010), paper Mo.2.D.5.
    [Crossref]
  21. K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks,” J. Lightwave Technol. 29(9), 1354–1366 (2011).
    [Crossref]
  22. J. Munkres, “Algorithms for the Assignment and Transportation Problems,” J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957).
    [Crossref]
  23. A. Cai, G. Shen, L. Peng, and M. Zukerman, “Novel node-arc model and multiiteration heuristics for static routing and spectrum assignment in elastic optical networks,” J. Lightwave Technol. 31(21), 3402–3413 (2013).
    [Crossref]

2016 (1)

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

2015 (2)

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

C. Wang, G. Shen, and S. K. Bose, “Distance Adaptive Dynamic Routing and Spectrum Allocation in Elastic Optical Networks With Shared Backup Path Protection,” J. Lightwave Technol. 33(14), 2955–2964 (2015).

2014 (2)

2013 (2)

2012 (1)

2011 (1)

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

2007 (2)

2004 (1)

2000 (1)

D. Stamatelakis and W. D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable Networks Using Preconfigured Cycles (p-cycles),” IEEE Trans. Commun. 48(8), 1262–1265 (2000).
[Crossref]

1957 (1)

J. Munkres, “Algorithms for the Assignment and Transportation Problems,” J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957).
[Crossref]

Bose, S. K.

Cai, A.

Cao, J.

Christodoulopoulos, K.

Dikbiyik, F.

Grover, W. D.

D. Stamatelakis and W. D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable Networks Using Preconfigured Cycles (p-cycles),” IEEE Trans. Commun. 48(8), 1262–1265 (2000).
[Crossref]

Gu, W.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

Guo, B.

Guo, L.

Habib, M. F.

Huang, S.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

Jin, Z.

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Leenheer, M. D.

Li, L.

Li, X.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

Liu, M.

Ma, C.

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Mukherjee, B.

Munkres, J.

J. Munkres, “Algorithms for the Assignment and Transportation Problems,” J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957).
[Crossref]

Ou, C.

Peng, L.

Sahasrabuddhe, L. H.

Shen, G.

Shi, Y.

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Stamatelakis, D.

D. Stamatelakis and W. D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable Networks Using Preconfigured Cycles (p-cycles),” IEEE Trans. Commun. 48(8), 1262–1265 (2000).
[Crossref]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tomkos, I.

Tornatore, M.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Varvarigos, E. A.

Wang, C.

Wang, Y.

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Wei, X.

Wei, Y.

Yin, M.

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Yin, S.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

Yu, H.

Zang, H.

Zhang, J.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

C. Ou, J. Zhang, H. Zang, L. H. Sahasrabuddhe, and B. Mukherjee, “New and Improved Approaches for Shared-Path Protection in WDM Mesh Networks,” J. Lightwave Technol. 22(5), 1223–1232 (2004).
[Crossref]

Zhang, M.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

Zhao, Y.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

Zhou, Y.

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

Zukerman, M.

IEEE Commun. Lett. (1)

X. Li, S. Huang, S. Yin, Y. Zhou, M. Zhang, Y. Zhao, J. Zhang, and W. Gu, “Design of K-Node (Edge) Content Connected Optical Datacenter Networks,” IEEE Commun. Lett. 20(3), 466–469 (2016).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE Trans. Commun. (1)

D. Stamatelakis and W. D. Grover, “Theoretical Underpinnings for the Efficiency of Restorable Networks Using Preconfigured Cycles (p-cycles),” IEEE Trans. Commun. 48(8), 1262–1265 (2000).
[Crossref]

J. Lightwave Technol. (8)

C. Ou, J. Zhang, H. Zang, L. H. Sahasrabuddhe, and B. Mukherjee, “New and Improved Approaches for Shared-Path Protection in WDM Mesh Networks,” J. Lightwave Technol. 22(5), 1223–1232 (2004).
[Crossref]

M. Liu, M. Tornatore, and B. Mukherjee, “Survivable Traffic Grooming in Elastic Optical Networks Shared Protection,” J. Lightwave Technol. 31(6), 903–909 (2013).
[Crossref]

C. Wang, G. Shen, and S. K. Bose, “Distance Adaptive Dynamic Routing and Spectrum Allocation in Elastic Optical Networks With Shared Backup Path Protection,” J. Lightwave Technol. 33(14), 2955–2964 (2015).

L. Guo, L. Li, J. Cao, H. Yu, and X. Wei, “On Finding Feasible Solutions With Shared Backup Resources for Surviving Double-Link Failures in Path-Protected WDM Mesh Networks,” J. Lightwave Technol. 25(1), 287–296 (2007).
[Crossref]

L. Guo and L. Li, “A Novel Survivable Routing Algorithm With Partial Shared-Risk Link Groups (SRLG)-Disjoint Protection Based on Differentiated Reliability Constraints in WDM Optical Mesh Networks,” J. Lightwave Technol. 25(6), 1410–1415 (2007).
[Crossref]

K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks,” J. Lightwave Technol. 29(9), 1354–1366 (2011).
[Crossref]

M. F. Habib, M. Tornatore, M. D. Leenheer, F. Dikbiyik, and B. Mukherjee, “Design of Disaster-Resilient Optical Datacenter Networks,” J. Lightwave Technol. 30(16), 2563–2573 (2012).
[Crossref]

A. Cai, G. Shen, L. Peng, and M. Zukerman, “Novel node-arc model and multiiteration heuristics for static routing and spectrum assignment in elastic optical networks,” J. Lightwave Technol. 31(21), 3402–3413 (2013).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Soc. Ind. Appl. Math. (1)

J. Munkres, “Algorithms for the Assignment and Transportation Problems,” J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957).
[Crossref]

Opt. Express (1)

Photonic Netw. Commun. (1)

C. Ma, J. Zhang, Y. Zhao, Z. Jin, Y. Shi, Y. Wang, and M. Yin, “Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks,” Photonic Netw. Commun. 30(2), 309–320 (2015).
[Crossref]

Other (8)

X. Li, S. Huang, S. Yin, Y. Zhou, H. Huang, Y. Zhao, and J. Zhang, “Experimental Demonstration of Flexible Content Placement to Provide K-Content Connectivity in SDN-Enabled Data Center Optical Networks,” in Proceedings of Asia Communications and Photonics Conference (ACP2015), paper AM1H.6.
[Crossref]

A. N. Patel, P. N. Ji, P. Jason, and T. Wang, “Survivable Transparent Flexible Optical WDM (FWDM) Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2011), paper OTuI2.
[Crossref]

M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-Tolerant Virtual Network Mapping to Provide Content Connectivity in Optical Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2013), paper OTh3E.4.
[Crossref]

S. Ferdousi, F. Dikbiyik, M. F. Habib, M. Tornatore, and B. Mukherjee, “Disaster-Aware Dynamic Content Placement in Optical Cloud Networks,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2014), paper M2H.4.
[Crossref]

J. Abley and K. Lindqvist, “Operation of Anycast Services,” IETF RFC 4786 (2011), https://tools.ietf.org/html/rfc4786

C. Wang, G. Shen, B. Chen, and L. Peng, “Protection Path-based Hitless Spectrum Defragmentation in Elastic Optical Networks: Shared Backup Path Protection,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2015), paper W1I.7.
[Crossref]

X. Shao, Y. K. Yeo, Z. Xu, X. Cheng, and L. Zhou, “Shared-Path Protection in OFDM-based Optical Networks with Elastic Bandwidth Allocation,” in Proceedings of Optical Fiber Communication Conference and Exposition (OFC2012), paper OTh4B.4.
[Crossref]

H. Zhang, X. Zheng, Y. Li, and H. Zhang, “Availability Analysis of Shared Backup Path Protection Subject to SRLG Constraints in WDM Mesh Networks,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC2010), paper Mo.2.D.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Two independent end-to-content paths in elastic optical datacenter network (a) routing and modulation level and (b) spectrum allocation.
Fig. 2
Fig. 2 Spectrum sharing between end-to-content backup paths (a) routing and modulation level without spectrum sharing, (b) spectrum allocation without spectrum sharing, (c) routing and modulation level with spectrum sharing, and (d) spectrum allocation with spectrum sharing.
Fig. 3
Fig. 3 Sharing principle between path sets (a) risk relationship, (b) perfect matching, (c) risk relationship without perfect matching, and (d) spectrum sharing on common link.
Fig. 4
Fig. 4 Simulation topology (a) n6s8 with the length of all links, (b) n6s8 with SRG1, and (c) n6s8 with SRG2.
Fig. 5
Fig. 5 The spectrum efficiency of SEBPP and DEBPP when k = 3 (a) distance-adaptive RMLSA and (b) RMLSA with lowest modulation level.
Fig. 6
Fig. 6 The spectrum efficiency of SEBPP and DEBPP when k = 3 (a) SRG1-disjoint RMLSA and (b) SRG2-disjoint RMLSA.
Fig. 7
Fig. 7 The spectrum efficiency of SEBPP and DEBPP when k = 2 (a) distance-adaptive RMLSA and (b) RMLSA with lowest modulation level.
Fig. 8
Fig. 8 The spectrum efficiency of SEBPP and DEBPP when k = 2 (a) SRG1-disjoint RMLSA and (b) SRG2-disjoint RMLSA.
Fig. 9
Fig. 9 Simulation topology (a) NSFNet with the length of all links and (b) NSFNet with SRGs.
Fig. 10
Fig. 10 The comparison between SEBPP and DEBPP (a) spectrum efficiency when k = 3, (b) success rate when k = 3, (c) spectrum efficiency k = 2, and (d) success rate when k = 2.

Tables (5)

Tables Icon

Algorithm 1. Perfect Matching Searching

Tables Icon

Algorithm 2. RMLSA for end-to-content working path with shortest distance

Tables Icon

Algorithm 3. RMLSA for end-to-content backup path with maximum sharing

Tables Icon

Table 1 Parameters for Three Kinds of Modulation Levels

Tables Icon

Table 2 Requests used in ILP model

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

min ( ( s , c ) T r R ( i , j ) E f Λ W ( i , j ) , f ( s , c ) , r + ( i , j ) E π ( i , j ) )
j : ( i , j ) E Y ( i , j ) ( s , c ) , r j : ( j , i ) E Y ( j , i ) ( s , c ) , r = { Z r ( s , c ) i = s A d ( s , c ) , r i D 0 o t h e r ( s , c ) T , i ( V D ) , r R
j : ( i , j ) E f Λ W ( i , j ) , f ( s , c ) , r j : ( j , i ) E f Λ W ( j , i ) , f ( s , c ) , r = { n ( s , c ) r i = s n ( s , c ) r i D 0 o t h e r ( s , c ) T , i ( V D ) , r R
r R d D A d ( s , c ) , r = 1 ( s , c ) T
( i , j ) E Y ( i , j ) ( s , c ) , r ( i , j ) E Y ( j , i ) ( s , c ) , r = 0 ( s , c ) T , r R , ( i s & & i D )
r R Y ( i , j ) ( s , c ) , r 1 ( s , c ) T , ( i , j ) E
W ( i , j ) , f ( s , c ) , r Y ( i , j ) ( s , c ) , r ( s , c ) T , ( i , j ) E , f Λ , r R
( i , j ) E Y ( i , j ) ( s , c ) , r * L ( i , j ) L r ( s , c ) T , r R
r R Z r ( s , c ) = 1 ( s , c ) T
Z r ( s , c ) Y ( i , j ) ( s , c ) , r ( s , c ) T , ( i , j ) E
n ( s , c ) r = Z r ( s , c ) * λ ( s , c ) r * B ( s , c ) T , r R
j : ( i , j ) E X l , ( i , j ) ( s , c ) , r j : ( j , i ) E X l , ( j , i ) ( s , c ) , r = { Z l , r ( s , c ) i = s A ¯ l , d ( s , c ) , r i D 0 o t h e r ( s , c ) T , l < k , i ( V D ) , r R
j : ( i , j ) E f Λ B l , ( i , j ) , f ( s , c ) , r j : ( j , i ) E f Λ B l , ( j , i ) , f ( s , c ) , r = { n ( s , c ) , l r i = s n ( s , c ) , l r i D 0 o t h e r ( s , c ) T , l < k , i ( V D ) , r R
r R d D A ¯ l , d ( s , c ) , r = 1 ( s , c ) T , l < k
( i , j ) E X l , ( i , j ) ( s , c ) , r ( i , j ) E X l , ( j , i ) ( s , c ) , r = 0 ( s , c ) T , l < k , r R , ( i s & & i D )
r R X l , ( i , j ) ( s , c ) , r 1 ( s , c ) T , l < k , ( i , j ) E
B l , ( i , j ) , f ( s , c ) , r X l , ( i , j ) ( s , c ) , r ( s , c ) T , l < k , ( i , j ) E , f Λ , r R
( i , j ) E X l , ( i , j ) ( s , c ) , r * L ( i , j ) L r ( s , c ) T , r R , l < k
r R Z l , r ( s , c ) = 1 ( s , c ) T , l < k
Z l , r ( s , c ) X l , ( i , j ) ( s , c ) , r ( s , c ) T , ( i , j ) E , r R , l < k
n ( s , c ) , l r = Z l , r ( s , c ) * λ ( s , c ) r * B ( s , c ) T , r R , l < k
( Y ( i , j ) ( s , c ) , r + l < k X l , ( i , j ) ( s , c ) , r ) 1 ( s , c ) T , i ( V / s ) , r R
( i , j ) E Y ( i , j ) ( s , c ) , r ( i , j ) E X l , ( i , j ) ( s , c ) , r ( s , c ) T , l < k , r R
r R ( s , c ) T W ( i , j ) , f ( s , c ) , r 1 ( i , j ) E , f Λ
j : ( i , j ) E W ( i , j ) , f ( s , c ) , r j : ( j , i ) E W ( j , i ) , f ( s , c ) , r = 0 ( s , c ) T , i ( V / s ) , f Λ , r R
j : ( i , j ) E B l , ( i , j ) , f ( s , c ) , r j : ( j , i ) E B l , ( j , i ) , f ( s , c ) , r = 0 ( s , c ) T , l < k , i ( V / s ) , f Λ , r R
( W ( i , j ) , f ( s , c ) , r W ( i , j ) , ( f + 1 ) ( s , c ) , r 1 ) × ( M ) f ' [ f + 2 , | Λ | ] W ( i , j ) , f ' ( s , c ) , r ( s , c ) T , ( i , j ) E , f Λ , r R
( B l , ( i , j ) , f ( s , c ) , r B l , ( i , j ) , ( f + 1 ) ( s , c ) , r 1 ) × ( M ) f ' [ f + 2 , | Λ | ] B l , ( i , j ) , f ' ( s , c ) , r ( s , c ) T , l < k , ( i , j ) E , f Λ , r R
r R ( A d ( s , c ) , r + l < k A ¯ l , d ( s , c ) , r ) M R d c r R ( A d ( s , c ) , r + l < k A ¯ l , d ( s , c ) , r ) ( s , c ) T , c C , d D
d D R d c K c C .
( s , c ) r R f Λ W ( i , j ) , f ( s , c ) , r + π ( i , j ) | Λ | ( i , j ) E .
c C S c * R d c C d d D
r R ( i , j ) x Y ( i , j ) ( s , c ) , r N α x ( s , c ) r R ( i , j ) x Y ( i , j ) ( s , c ) , r ( s , c ) T , x S R G
r R ( i , j ) x X l , ( i , j ) ( s , c ) , r N β l , x ( s , c ) r R ( i , j ) x X l , ( i , j ) ( s , c ) , r ( s , c ) T , x S R G , l < k
α x ( s , c ) + l < k β l , x ( s , c ) k ( s , c ) T , x S R G
r R ( i , j ) x Y ( i , j ) ( s , c ) , r N ω x ( s , c ) r R ( i , j ) x Y ( i , j ) ( s , c ) , r ( s , c ) T , x F
r R ( i , j ) x X l , ( i , j ) ( s , c ) , r N ξ l , x ( s , c ) r R ( i , j ) x X l , ( i , j ) ( s , c ) , r ( s , c ) T , x F , l < k
χ l , ( i , j ) , x ( s , c ) r R X l , ( i , j ) ( s , c ) , r ( s , c ) T , l < k , ( i , j ) E , x F
χ l , ( i , j ) , x ( s , c ) ω x ( s , c ) ( s , c ) T , l < k , ( i , j ) E , x F
χ l , ( i , j ) , x ( s , c ) 1 ξ l , x ( s , c ) ( s , c ) T , l < k , ( i , j ) E , x F
χ l , ( i , j ) , x ( s , c ) l ' < k ξ l ' , x ( s , c ) ( k 2 ) ( s , c ) T , l < k , ( i , j ) E , x F
χ l , ( i , j ) , x ( s , c ) l ' < k ξ l ' , x ( s , c ) ( k 2 ) + r R X l , ( i , j ) ( s , c ) , r + ω x ( s , c ) ξ l , x ( s , c ) 2 ( s , c ) T , l < k , ( i , j ) E , x F
π ( i , j ) ( s , c ) l < k f Λ χ l , ( i , j ) , x ( s , c ) * B l , ( i , j ) , f ( s , c ) x F , ( i , j ) E
COST ( l , S W P ) = f l C f l S W P
C f = { 1 if FS is free 1/ ( B j B l , f ( k 1 | P M ( P B j / B j , p _ p a t h s ) | ) + 1) if FS is shareable, | P M ( P B j / B j , p _ p a t h s ) | k 1

Metrics