Abstract

We experimentally demonstrate a 16 × 16 non-blocking optical switch fabric with a footprint of 10.7 × 4.4 mm2. The switch fabric is composed of 56 2 × 2 silicon Mach-Zehnder interferometers (MZIs), with each integrated with a pair of TiN resistive micro-heaters and a p-i-n diode. The average on-chip insertion loss at 1560 nm wavelength is ~6.7 dB and ~14 dB for the “all-cross” and “all-bar” states, respectively, with a loss variation of ± 1 dB over all routing paths. The measured rise/fall time of the switch upon electrical tuning is 3.2/2.5 ns. The switching functionality is verified by transmission of 20 Gb/s on-off keying (OOK) and 50 Gb/s quadrature phase-shift keying (QPSK) optical signals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters

Shuoyi Zhao, Liangjun Lu, Linjie Zhou, Dong Li, Zhanzhi Guo, and Jianping Chen
Photon. Res. 4(5) 202-207 (2016)

4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers

Zuxiang Li, Linjie Zhou, Liangjun Lu, Shuoyi Zhao, Dong Li, and Jianping Chen
Photon. Res. 4(1) 21-26 (2016)

Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches

Keijiro Suzuki, Ken Tanizawa, Satoshi Suda, Hiroyuki Matsuura, Takashi Inoue, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 25(7) 7538-7546 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [Crossref]
  2. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
    [Crossref] [PubMed]
  3. R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
    [Crossref]
  4. M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future optical networks,” J. Lightwave Technol. 24(12), 4684–4696 (2006).
    [Crossref]
  5. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res. 3(5), B10–B27 (2015).
    [Crossref]
  6. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33(4), 768–777 (2015).
    [Crossref]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  8. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
    [Crossref]
  9. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  10. J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38(19), 3926–3929 (2013).
    [Crossref] [PubMed]
  11. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  12. J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38(22), 4774–4776 (2013).
    [Crossref] [PubMed]
  13. L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
    [Crossref]
  14. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
    [Crossref] [PubMed]
  15. T. Chu, L. Qiao, and W. Tang, “High-speed 8x8 electro-optic switch matrix based on silicon PIN structure waveguides,” 12th International Conference on Group IV Photonics (GFP), 123–124, 2015.
  16. N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, and C. L. Schow, “Modeling and characterization of a nonblocking 4x4 Mach-Zehnder silicon photonic switch fabric,” J. Lightwave Technol. 33, 4329–4337 (2015).
    [Crossref]
  17. X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
    [Crossref]
  18. P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
    [Crossref]
  19. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  20. R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
    [Crossref]
  21. W. Wang, H. Zhou, J. Yang, M. Wang, and X. Jiang, “Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects,” Opt. Lett. 37(12), 2307–2309 (2012).
    [Crossref] [PubMed]
  22. L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
    [Crossref]
  23. Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.
  24. L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
    [Crossref] [PubMed]
  25. L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
    [Crossref]
  26. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  27. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  28. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  29. C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010).
    [Crossref]
  30. Y. Liu, J. M. Shainline, X. Zeng, and M. A. Popović, “Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling,” Opt. Lett. 39(2), 335–338 (2014).
    [Crossref] [PubMed]
  31. https://www.lumerical.com/ .
  32. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
    [Crossref]
  33. S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
    [Crossref]
  34. P.-H. Yuen and L.-K. Chen, “Optimization of microring-based interconnection by leveraging the asymmetric behaviors of switching elements,” J. Lightwave Technol. 31(10), 1585–1592 (2013).
    [Crossref]
  35. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
    [Crossref]

2016 (1)

2015 (9)

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, and C. L. Schow, “Modeling and characterization of a nonblocking 4x4 Mach-Zehnder silicon photonic switch fabric,” J. Lightwave Technol. 33, 4329–4337 (2015).
[Crossref]

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited],” Photon. Res. 3(5), B10–B27 (2015).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33(4), 768–777 (2015).
[Crossref]

2014 (6)

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref] [PubMed]

Y. Liu, J. M. Shainline, X. Zeng, and M. A. Popović, “Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling,” Opt. Lett. 39(2), 335–338 (2014).
[Crossref] [PubMed]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

2013 (6)

P.-H. Yuen and L.-K. Chen, “Optimization of microring-based interconnection by leveraging the asymmetric behaviors of switching elements,” J. Lightwave Technol. 31(10), 1585–1592 (2013).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38(22), 4774–4776 (2013).
[Crossref] [PubMed]

J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38(19), 3926–3929 (2013).
[Crossref] [PubMed]

R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
[Crossref]

R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010).
[Crossref]

2008 (1)

2006 (2)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Annoni, A.

Assefa, S.

Baks, C. W.

Barwicz, T.

Beausoleil, R. G.

R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
[Crossref]

Bergman, K.

Biberman, A.

Bickford, J. R.

Budd, R.

Carminati, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

Chen, J.

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref] [PubMed]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.

Chen, L.

Chen, L.-K.

Chen, Y. K.

Chiba, T.

Chiu, C.-H.

C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010).
[Crossref]

C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010).
[Crossref]

Chu, T.

T. Chu, L. Qiao, and W. Tang, “High-speed 8x8 electro-optic switch matrix based on silicon PIN structure waveguides,” 12th International Conference on Group IV Photonics (GFP), 123–124, 2015.

Ciccarella, P.

Cong, G.

Dasmahapatra, P.

P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
[Crossref]

Doany, F. E.

Dupuis, N.

Ferrari, G.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

Gill, D. M.

Green, W. M. J.

Grillanda, S.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

Han, S.

Igarashi, Y.

Ikeda, K.

Jahnes, C. V.

Ji, R. Q.

R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
[Crossref]

Jiang, X.

Jiejiang, X.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Jinzhong, Y.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Jouppi, N. P.

R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
[Crossref]

Kash, J. A.

Kawashima, H.

Khater, M. H.

Kiewra, E.

Kim, S. H.

Kimura, T.

Klonidis, D.

Koshino, K.

Kuchta, D. M.

Lee, B. G.

Li, D.

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

Li, S.

Li, X.

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref] [PubMed]

Li, Y.

Li, Z.

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38(19), 3926–3929 (2013).
[Crossref] [PubMed]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2 × 2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38(22), 4774–4776 (2013).
[Crossref] [PubMed]

Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.

Lipson, M.

Liu, Y.

Lu, L.

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref] [PubMed]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.

Manqing, T.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Masahara, M.

Matsukawa, T.

Matsumaro, K.

McLaren, M.

R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
[Crossref]

Melloni, A.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

Morichetti, F.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

Muller, R. S.

Namiki, S.

Nejabati, R.

O’Mahony, M. J.

Ohno, M.

Ohtsuka, M.

Orcutt, J. S.

Peiji, Z.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Pepeljugoski, P.

Politi, C.

Poon, A. W.

Popovic, M. A.

Qiao, L.

T. Chu, L. Qiao, and W. Tang, “High-speed 8x8 electro-optic switch matrix based on silicon PIN structure waveguides,” 12th International Conference on Group IV Photonics (GFP), 123–124, 2015.

Quack, N.

Reinholm, C.

Rimolo-Donadio, R.

Rohit, A.

P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
[Crossref]

Rylyakov, A. V.

Sampietro, M.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

Schares, L.

Schow, C. L.

Seki, M.

Seok, T. J.

Shainline, J. M.

Shank, S. M.

Sherwood-Droz, N.

Simeonidou, D.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sorel, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

Stabile, R.

P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
[Crossref]

Strain, M.

Strain, M. J.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

Suda, S.

Sugaya, T.

Suzuki, K.

Tadokoro, H.

Tang, W.

T. Chu, L. Qiao, and W. Tang, “High-speed 8x8 electro-optic switch matrix based on silicon PIN structure waveguides,” 12th International Conference on Group IV Photonics (GFP), 123–124, 2015.

Tanizawa, K.

Toyama, M.

Van Campenhout, J.

Vlasov, Y. A.

Wang, H.

Wang, M.

Wang, W.

Williams, K. A.

P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
[Crossref]

Wu, M. C.

Xiao, X.

Xing, J.

Xu, J.

R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
[Crossref]

Yanagihara, M.

Yang, J.

Yang, L.

R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
[Crossref]

Yang, M.

Yokoyama, N.

Yoo, B.-W.

Yoo, S. J. B.

Yu, J.

Yu, Y.

Yuanhao, G.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Yude, Y.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Yuen, P.-H.

Zeng, X.

Zhang, L.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Zhang, Y.

Zhao, S.

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

Zhiyong, L.

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

Zhou, H.

Zhou, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref] [PubMed]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.

Zhou, P.

IEEE J. Quantum Electron. (1)

C.-H. Chiu and C.-H. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46(11), 1656–1661 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-invasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

R. G. Beausoleil, M. McLaren, and N. P. Jouppi, “Photonic architectures for high-performance data centers,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700109 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Jiejiang, Z. Peiji, G. Yuanhao, L. Zhiyong, T. Manqing, Y. Yude, and Y. Jinzhong, “Nonblocking 4 x 4 silicon electro-optic switch matrix with low power consumption,” IEEE Photon. Technol. Lett. 27, 1434–1436 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, D. Li, S. Zhao, X. Li, and J. Chen, “4×4 silicon optical switches based on double-ring-assisted Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett. 27, 2457–2460 (2015).
[Crossref]

IEEE Photonics J. (2)

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 x 4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7, 7800108 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Q. Ji, J. Xu, and L. Yang, “Five-port optical router based on microring switches for photonic networks-on-chip,” IEEE Photonics Technol. Lett. 25(5), 492–495 (2013).
[Crossref]

J. Lightwave Technol. (8)

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4 x 4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33(4), 857–864 (2015).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

P.-H. Yuen and L.-K. Chen, “Optimization of microring-based interconnection by leveraging the asymmetric behaviors of switching elements,” J. Lightwave Technol. 31(10), 1585–1592 (2013).
[Crossref]

N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, and C. L. Schow, “Modeling and characterization of a nonblocking 4x4 Mach-Zehnder silicon photonic switch fabric,” J. Lightwave Technol. 33, 4329–4337 (2015).
[Crossref]

M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future optical networks,” J. Lightwave Technol. 24(12), 4684–4696 (2006).
[Crossref]

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33(4), 768–777 (2015).
[Crossref]

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optica (3)

Photon. Res. (1)

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Other (4)

T. Chu, L. Qiao, and W. Tang, “High-speed 8x8 electro-optic switch matrix based on silicon PIN structure waveguides,” 12th International Conference on Group IV Photonics (GFP), 123–124, 2015.

P. Dasmahapatra, R. Stabile, A. Rohit, and K. A. Williams, “Crossbar switch matrix using fifth-order resonators,” 10th International Conference on Group IV Photonics (GFP), 11–12 (2013).
[Crossref]

https://www.lumerical.com/ .

Z. Li, L. Zhou, L. Lu, and J. Chen, “4×4 strictly non-blocking optical switch fabric based on cascaded multimode interferometers,” 14th International Conference on Optical Communications and Networks (ICOCN), pp. 1–3, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Architecture of the 16 × 16 optical switch based on a Benes architecture. (b) MMI-based waveguide crossing. (c) 2 × 2 MZI switch element. The upper arm is integrated with both a p-i-n diode and a TiN micro-heater. The bottom arm is integrated with a TiN micro-heater.
Fig. 2
Fig. 2 (a) Optical microscope image of the fabricated 16 × 16 optical switch. The inset shows the zoom-in view of one stage. (b) Photo of the 16 × 16 switch after electrical and optical package. The inset shows the zoom-in view of the packaged switch chip.
Fig. 3
Fig. 3 (a) Microscope view of MMI waveguide crossing test structures. (b) Microscope image of a 2 × 2 MMI coupler test structure. (c) Measured insertion loss and crosstalk of the MMI waveguide crossing. (d) Measured insertion loss of the 2 × 2 MMI coupler. The inset shows the linear fitting of the normalized transmission at 1560 nm wavelength.
Fig. 4
Fig. 4 (a) Microscope image of the 2 × 2 MZI switch element. (b) and (c) Output transmission spectra at the (b) “cross” and (c) “bar” states.
Fig. 5
Fig. 5 Normalized transmission spectra of the 16 × 16 switch at the “all-cross” state.
Fig. 6
Fig. 6 Normalized transmission spectra of the 16 × 16 switch at the “all-bar” state.
Fig. 7
Fig. 7 Experimental setup for demonstration of optical signal switching. Solid and dashed lines represent the optical and electrical signals, respectively.
Fig. 8
Fig. 8 Measured high speed OOK signal switched by the 16 × 16 switch. The top row shows the signal through routing path I1-O9 and the bottom row I1-O10.
Fig. 9
Fig. 9 Measured constellation diagrams of a 50Gb/s QPSK signal. (a) BtB transmission; (b) the “all-cross” state; (c) the “all-bar state.”

Tables (2)

Tables Icon

Table 1 Thermo-optic power consumption of the 16 × 16 switch (unit: mW)

Tables Icon

Table 2 Electro-optic tuning current and power consumption of the switch

Metrics