Abstract

A computational multi-projection display is proposed by employing a multi-projection system combining with compressive light field displays. By modulating the intensity of light rays from a spatial light modulator inside a single projector, the proposed system can offer several compact views to observer. Since light rays are spread to all directions, the system can provide flexible positioning of viewpoints without stacking projectors in vertical direction. Also, if the system is constructed properly, it is possible to generate view images with inter-pupillary gap and satisfy the super multi-view condition. We explain the principle of the proposed system and verify its feasibility with simulations and experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-projection of lenticular displays to construct a 256-view super multi-view display

Yasuhiro Takaki and Nichiyo Nago
Opt. Express 18(9) 8824-8835 (2010)

Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax

Peiren Wang, Xinzhu Sang, Xunbo Yu, Xin Gao, Binbin Yan, Boyang Liu, Li Liu, Chao Gao, Yang Le, Yuanhang Li, and Jingyan Du
Opt. Express 27(23) 34442-34453 (2019)

Viewing zone duplication of multi-projection 3D display system using uniaxial crystal

Chang-Kun Lee, Soon-Gi Park, Seokil Moon, and Byoungho Lee
Opt. Express 24(8) 8458-8470 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. S.-G. Park, J.-Y. Hong, C.-K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
    [Crossref] [PubMed]
  3. K. Akşit, A. H. G. Niaki, E. Ulusoy, and H. Urey, “Super stereoscopy technique for comfortable and realistic 3D displays,” Opt. Lett. 39(24), 6903–6906 (2014).
    [Crossref] [PubMed]
  4. J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34(1), 39–48 (2013).
    [Crossref]
  5. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
    [Crossref]
  6. S. Yoon, H. Baek, S. W. Min, S.-G. Park, M. K. Park, S. H. Yoo, H. R. Kim, and B. Lee, “Implementation of active-type Lamina 3D display system,” Opt. Express 23(12), 15848–15856 (2015).
    [Crossref] [PubMed]
  7. Y. Takaki, M. Tokoro, and K. Hirabayashi, “Tiled large-screen three-dimensional display consisting of frameless multi-view display modules,” Opt. Express 22(6), 6210–6221 (2014).
    [Crossref] [PubMed]
  8. K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” http://gl.ict.usc.edu/Research/PicoArray/ (2013).
  9. M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
    [Crossref]
  10. S. Iwasawa, M. Kawakita, and N. Inoue, “REI: an automultiscopic projection display,” in Proceedings of Three Dimensional Systems and Applications Conference (Ultra Realistic Communication Forum), Osaka, Japan, 2013, paper 1.
  11. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  12. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  13. C.-K. Lee, S.-G. Park, J. Jeong, and B. Lee, “Multi-projection 3D display with dual projection system using uniaxial crystal,” SID Symp. Dig. Tech. Pap. 46(1), 538–541 (2015).
  14. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
    [Crossref]
  15. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
    [Crossref]
  16. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
    [Crossref]
  17. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
    [Crossref]
  18. M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 58 (2014).
    [Crossref]
  19. A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
    [Crossref]
  20. B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics 3rd ed (Wiley-Interscience, 1991).
  21. N. D. Ho, P. Van Dooren, and V. Blondel, “Weighted nonnegative matrix factorization and face feature extraction,” Image Vis. Comput. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.550.2833 (2007).
  22. Blender Org, “Blender 2.76b”, https://www.blender.org/ .
  23. A. V. Oppenhiem, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1996).
  24. J. W. Goodman, Fourier Optics 3rd ed (Roberts & Company, 2005).
  25. “Fresnel lens comparison”, https://www.modulatedlight.org/optical_comms/fresnel_lens_comparision.html

2015 (1)

2014 (4)

2013 (3)

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34(1), 39–48 (2013).
[Crossref]

2012 (2)

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

2011 (2)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

2010 (2)

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

2007 (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Aksit, K.

Baek, H.

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Fuchs, H.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Geng, J.

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34(1), 39–48 (2013).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Haino, Y.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

Hirabayashi, K.

Hirsch, M.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 58 (2014).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hong, J.-Y.

Inoue, N.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Iwasawa, S.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Kawakita, M.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Kim, H. R.

Kim, Y.

S.-G. Park, J.-Y. Hong, C.-K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
[Crossref] [PubMed]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

Lanman, D.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

Lee, B.

Lee, C.-K.

Maimone, A.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Min, S. W.

Miranda, M.

Nago, N.

Niaki, A. H. G.

Park, M. K.

Park, S.-G.

Raskar, R.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 58 (2014).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

Sakai, M.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Sato, M.

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Takaki, Y.

Tokoro, M.

Ulusoy, E.

Urey, H.

Wetzstein, G.

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 58 (2014).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Yoo, S. H.

Yoon, S.

ACM Trans. Graph. (7)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-later 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29(6), 163 (2010).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Tensor display: compressive light field synthesis using multilayer display with directional backlighting,” ACM Trans. Graph. 31, 1–11 (2012).
[Crossref]

M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field projection system,” ACM Trans. Graph. 33(4), 58 (2014).
[Crossref]

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 153 (2013).
[Crossref]

Appl. Opt. (1)

Displays (1)

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34(1), 39–48 (2013).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (1)

M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, “3D image quality of 200-inch glasses-free 3D display system,” Proc. SPIE 8288, 82880B (2012).
[Crossref]

Other (9)

S. Iwasawa, M. Kawakita, and N. Inoue, “REI: an automultiscopic projection display,” in Proceedings of Three Dimensional Systems and Applications Conference (Ultra Realistic Communication Forum), Osaka, Japan, 2013, paper 1.

C.-K. Lee, S.-G. Park, J. Jeong, and B. Lee, “Multi-projection 3D display with dual projection system using uniaxial crystal,” SID Symp. Dig. Tech. Pap. 46(1), 538–541 (2015).

K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” http://gl.ict.usc.edu/Research/PicoArray/ (2013).

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics 3rd ed (Wiley-Interscience, 1991).

N. D. Ho, P. Van Dooren, and V. Blondel, “Weighted nonnegative matrix factorization and face feature extraction,” Image Vis. Comput. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.550.2833 (2007).

Blender Org, “Blender 2.76b”, https://www.blender.org/ .

A. V. Oppenhiem, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1996).

J. W. Goodman, Fourier Optics 3rd ed (Roberts & Company, 2005).

“Fresnel lens comparison”, https://www.modulatedlight.org/optical_comms/fresnel_lens_comparision.html

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (915 KB)      Experimental results for images of two letters and a human figure, visualization 1
» Visualization 2: MOV (978 KB)      Experimental results for images of two letters and a human figure, visualization 2
» Visualization 3: MOV (1056 KB)      Comparison between target, simulation, and experimental results with vertical parallax

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Configuration of the proposed system.
Fig. 2
Fig. 2 Equivalent model of computational multi-projection system for a single projector.
Fig. 3
Fig. 3 Comparison between target images and simulation results of the system for (a) two letters in different depths, (b) a human figure.
Fig. 4
Fig. 4 PSNR analysis with various gaps. (a) The schematic diagram. (b) Change of PSNR as the number of iterations varies and (c) PSNR with several gaps (number of iterations = 50).
Fig. 5
Fig. 5 The configuration of synthesis of the light fields when (a) gap is small and (b) gap is big.
Fig. 6
Fig. 6 Configuration of experimental setup: (a) whole feature of the system, (b) appearance from behind, and (b) arrangement of diffuser and Fresnel lens.
Fig. 7
Fig. 7 Experimental results for images of two letters and a human figure (Visualization 1,Visualization 2).
Fig. 8
Fig. 8 Comparison between target, simulation, and experimental results with vertical parallax (Visualization 3).
Fig. 9
Fig. 9 Comparison of detailed features between target image, simulation and experimental results: (a) 1st view from projector 1 and (b) 1st view from projector 2.
Fig. 10
Fig. 10 Diffraction effect due to the rectangular aperture of a pixel: (a) Demonstration of the diffraction in the proposed system, (b) normalized intensity pattern and the pixel boundary, and (c) pixel boundaries for exaggerated situation.
Fig. 11
Fig. 11 Relationship between the number of projectors and PSNR value of reconstructed images: (a) Reconstructed images for the system with a single projector. 5 projectors, and 10 projectors, (b) graph which represents the relationship, and (c) comparison between center images of each case.
Fig. 12
Fig. 12 Configuration of accommodation response: (a) Five reconstructed images in different positions. (b) Simulation images of two letters when the lens focuses on different depths. (c) Experimental results as the camera focuses on two letters respectively.

Tables (1)

Tables Icon

Table 1 Experimental Conditions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

l n = η 0 η n ,
l ^ (x,v)= p s ( f s (x,v)) p l ( f l (x,v)).
( f s (x,v) α )=( 1 Δz 0 1 )( 1 0 1/f 1 )( 1 g 0 1 )( f l (x,v) β ),
( f l (x,v) β )=( 1 d ob 0 1 )( x v ),
L ^ =( F s p s )( F l p l ),
min L( F s p s )( F l p l ) 2 .
p s p s F s T (L( F l p l )) F s T ( L ^ ( F l p l ))+ε , p l p l F l T (L( F s p s )) F l T ( L ^ ( F s p s ))+ε .
I i ( θ x , θ y ) I c sin c 2 ( w λ θ x )sin c 2 ( h λ θ y ).
θ d arcsin 1.22λ p ,
2 d ob tan θ d r n1 .

Metrics