Abstract

A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method to improve beam quality by compensating spherical aberrations in master oscillator power amplifier laser systems

Zhibin Ye, Yi Wang, Zhigang Zhao, Chong Liu, and Zhen Xiang
Appl. Opt. 53(33) 7963-7967 (2014)

Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers

Xingpeng Yan, Qiang Liu, Xing Fu, Dongsheng Wang, and Mali Gong
J. Opt. Soc. Am. B 27(6) 1286-1290 (2010)

1.6  MW peak power, 90  ps all-solid-state laser from an aberration self-compensated double-passing end-pumped Nd:YVO4 rod amplifier

Chunhua Wang, Chong Liu, Lifeng Shen, Zhiliang Zhao, Bin Liu, and Hongbo Jiang
Appl. Opt. 55(9) 2399-2403 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
    [Crossref] [PubMed]
  2. M. Hu, Y. Zheng, J. Cai, G. Zhang, Q. Li, X. Zhou, Y. Wei, and Y. Lu, “CW dual-frequency MOPA laser with frequency separation of 45 GHz,” Opt. Express 23(8), 9881–9889 (2015).
    [Crossref] [PubMed]
  3. X. Yan, Q. Liu, X. Fu, Y. Wang, L. Huang, D. Wang, and M. Gong, “A 108 W, 500 kHz Q-switching Nd:YVO4 laser with the MOPA configuration,” Opt. Express 16(5), 3356–3361 (2008).
    [Crossref] [PubMed]
  4. X. Yan, Q. Liu, X. Fu, D. Wang, and M. Gong, “Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers,” J. Opt. Soc. Am. B 27(6), 1286–1290 (2010).
    [Crossref]
  5. B. J. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250(4), 241–251 (2005).
    [Crossref]
  6. M. L. Gong, Y. Qiu, L. Huang, Q. Liu, P. Yan, and H. T. Zhang, “Beam quality improvement by joint compensation of amplitude and phase,” Opt. Lett. 38(7), 1101–1103 (2013).
    [Crossref] [PubMed]
  7. X. Lei, S. Wang, H. Yan, W. Liu, L. Dong, P. Yang, and B. Xu, “Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization,” Opt. Express 20(20), 22143–22157 (2012).
    [Crossref] [PubMed]
  8. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [Crossref] [PubMed]
  9. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
    [Crossref] [PubMed]
  10. Y. Lumer, I. Moshe, S. Jackel, and A. Meir, “Use of phase corrector plates to increase the power of radially polarized oscillators,” J. Opt. Soc. Am. B 27(7), 1337–1342 (2010).
    [Crossref]
  11. K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
    [Crossref]
  12. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Science & Business Media, 2013), Section 13.3.
  13. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25(1), 107–117 (1986).
    [Crossref] [PubMed]
  14. R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
    [Crossref]
  15. Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
    [Crossref]
  16. Internation Organization for Standardization, “Lasers and Laser-Related Equipment-Test Methods for Laser Beam Parameters-Beam Widths, Divergence Angle and Beam Propagation Factor,” ISO 11146, (Geneva, 1999).
  17. Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).
  18. Z. Zhao, S. Pan, Z. Xiang, Y. Dong, J. Ge, C. Liu, and J. Chen, “Influences of spherical aberration on resonator’s stable zones and fundamental mode output power scaling of solid state laser oscillators,” Opt. Express 20(10), 10605–10616 (2012).
    [Crossref] [PubMed]

2015 (2)

M. Hu, Y. Zheng, J. Cai, G. Zhang, Q. Li, X. Zhou, Y. Wei, and Y. Lu, “CW dual-frequency MOPA laser with frequency separation of 45 GHz,” Opt. Express 23(8), 9881–9889 (2015).
[Crossref] [PubMed]

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

2014 (1)

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2010 (3)

2008 (1)

2007 (1)

2005 (1)

B. J. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250(4), 241–251 (2005).
[Crossref]

1995 (1)

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

1988 (1)

K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
[Crossref]

1986 (1)

Cai, J.

Chen, J.

Dong, L.

Dong, Y.

Driedger, K. P.

K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
[Crossref]

Eppich, B.

B. J. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250(4), 241–251 (2005).
[Crossref]

Fu, X.

Ge, J.

Gong, M.

Gong, M. L.

Hodgson, N.

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

Hu, M.

Huang, L.

Iffländer, R. M.

K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
[Crossref]

Jackel, S.

Jiang, W.

Lei, X.

Leibush, E.

Li, Q.

Li, T.

Li, X.

Liang, X.

Liu, C.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Zhao, S. Pan, Z. Xiang, Y. Dong, J. Ge, C. Liu, and J. Chen, “Influences of spherical aberration on resonator’s stable zones and fundamental mode output power scaling of solid state laser oscillators,” Opt. Express 20(10), 10605–10616 (2012).
[Crossref] [PubMed]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Liu, L.

Liu, Q.

Liu, W.

Lu, Y.

Lumer, Y.

Magni, V.

Martinez-Herrero, R.

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

Meir, A.

Mejias, P. M.

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

Moshe, I.

Neubert, B. J.

B. J. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250(4), 241–251 (2005).
[Crossref]

Ning, Y.

Pan, S.

Qi, Y.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Qiu, Y.

Tang, X.

Wang, C.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
[Crossref] [PubMed]

Wang, D.

Wang, S.

Wang, Y.

Weber, H.

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
[Crossref]

Wei, Y.

Xiang, Z.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Zhao, S. Pan, Z. Xiang, Y. Dong, J. Ge, C. Liu, and J. Chen, “Influences of spherical aberration on resonator’s stable zones and fundamental mode output power scaling of solid state laser oscillators,” Opt. Express 20(10), 10605–10616 (2012).
[Crossref] [PubMed]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Xu, B.

Yan, H.

Yan, P.

Yan, X.

Yang, P.

Ye, Z.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Zhang, G.

Zhang, H. T.

Zhang, X.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Zhao, Z.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Zhao, S. Pan, Z. Xiang, Y. Dong, J. Ge, C. Liu, and J. Chen, “Influences of spherical aberration on resonator’s stable zones and fundamental mode output power scaling of solid state laser oscillators,” Opt. Express 20(10), 10605–10616 (2012).
[Crossref] [PubMed]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Zheng, Y.

Zhou, X.

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

R. Martinez-Herrero, P. M. Mejias, N. Hodgson, and H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum Electron. 31(12), 2173–2176 (1995).
[Crossref]

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam Profile Evolution and Beam Quality Changes Inside a Diode-end-pumped Laser Oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

K. P. Driedger, R. M. Iffländer, and H. Weber, “Multirod resonators for high-power solid-state lasers with improved beam quality,” IEEE J. Quantum Electron. 24(4), 665–674 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam Quality Management in Multi-stage Side-Pumped Nd: YAG MOPA Laser Systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600506 (2015).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

B. J. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250(4), 241–251 (2005).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Other (2)

N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer Science & Business Media, 2013), Section 13.3.

Internation Organization for Standardization, “Lasers and Laser-Related Equipment-Test Methods for Laser Beam Parameters-Beam Widths, Divergence Angle and Beam Propagation Factor,” ISO 11146, (Geneva, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of the beam quality management in MOPA lasers for (a) the symmetrical oscillator and (b) the asymmetrical oscillator.
Fig. 2
Fig. 2 Schematics of the beam quality and wavefront aberration measurements of intra-cavity beams. (a) A symmetrical cavity; (b) an asymmetrical cavity.
Fig. 3
Fig. 3 Setups of the beam quality management by extra-cavity reproduction of wavefront aberrations in MOPA lasers for (a) the symmetrical oscillator and (b) the asymmetrical oscillator.
Fig. 4
Fig. 4 Power scaling up and beam quality evolution in MOPA systems with (a) a symmetrical oscillator and (b) an asymmetrical oscillator.

Tables (2)

Tables Icon

Table 1 Results of M d i f f 2 , C 04, M a b 2 , the Calculated and Measured M 2 Factor, for the Symmetrical Resonator

Tables Icon

Table 2 Results of M d i f f 2 , C 04, M a b 2 , the Calculated and Measured M 2 Factor, for Asymmetrical Resonators

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M 2 = ( M d i f f 2 ) 2 + ( M a b 2 ) 2 ,
φ ( r ) = k [ C 0 + C 02 ( r r 0 ) 2 + C 04 ( r r 0 ) 4 + ( h i g h o r d e r s ) ] ,
M a b 2 = k | C 04 | 3 2 ,

Metrics