Abstract

We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10−3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10−2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides

Zijun Xu, Qiang Jin, Zhihua Tu, and Shiming Gao
Appl. Opt. 57(18) 5036-5042 (2018)

All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber

Wei Pan, Qiang Jin, Xibin Li, and Shiming Gao
J. Opt. Soc. Am. B 32(12) 2417-2424 (2015)

All-fiber polarization-division multiplexing to mode-division multiplexing conversion for hybrid optical networks

Lipeng Feng, Yan Li, HongHang Zhou, Sihan Wu, Chen Yang, Wei Li, Jifang Qiu, Hongxiang Guo, Xiaobin Hong, and Jian Wu
Appl. Opt. 57(36) 10528-10533 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” Journal on Selected Areas in Communications 16(7), 1061–1073 (1998).
    [Crossref]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  5. R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  6. J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference, Paper Th5C.2 (2015).
    [Crossref]
  7. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference, Paper Th5C.3 (2015).
    [Crossref]
  8. X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer,” Opt. Express 20(13), 14302–14307 (2012).
    [Crossref] [PubMed]
  9. J. Carpenter, S. G. Leon-Saval, J. R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M. A. F. Roelens, B. J. Eggleton, and J. Schröder, “1x11 few-mode fiber wavelength selective switch using photonic lanterns,” Opt. Express 22(3), 2216–2221 (2014).
    [Crossref] [PubMed]
  10. N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R. J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S. U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in Optical Fiber Communication Conference, Paper Th5C.5 (2015).
    [Crossref]
  11. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  12. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  13. W. Pan, Q. Jin, X. Li, and S. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Am. B 32(12), 2417–2424 (2015).
    [Crossref]
  14. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  15. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
    [Crossref]
  16. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
    [Crossref]
  17. C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
    [Crossref]
  18. Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22(1), 127–135 (2014).
    [Crossref] [PubMed]
  19. N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference, Paper OTu2D.5 (2013).
  20. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5–6), 429–440 (2013).
  21. T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
    [Crossref]
  22. J. Bohn, J. Carpenter, S. Gross, M. Withford, and J. Schroder, “Characterization of laser inscribed on-chip photonic lanterns with different core distances,” in European Conference on Optical Communication (ECOC), paper P.1.14 (2015).
    [Crossref]
  23. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
    [Crossref] [PubMed]
  24. K.-P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32(4), 614–628 (2014).
    [Crossref]
  25. G. W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]
  26. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric amplification, wavelength conversion, and phase conjugation of a 2.048-Tbit/s WDM PDM 16-QAM signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
    [Crossref]
  27. M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
    [Crossref]
  28. S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. E. Willner, “λ-conversion of 160-Gbit/s PDM 16-QAM using a single periodically-poled lithium niobate waveguide,” in Optical Fiber Communication Conference, Paper OWG5 (2011).
    [Crossref]
  29. S. D. Le, M. Gay, L. Bramerie, M. Costa e Silva, K. Lenglé, T. Chartier, M. Thual, J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Wavelength conversion in a highly nonlinear chalcogenide microstructured fiber,” Opt. Lett. 37(22), 4576–4578 (2012).
    [Crossref] [PubMed]
  30. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  31. C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
    [Crossref] [PubMed]
  32. M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “AlGaAs-on-insulator nanowire with 750 nm FWM bandwidth, −9 dB CW conversion efficiency, and ultrafast operation enabling record Tbaud wavelength conversion,” in Optical Fiber Communication Conference, Paper Th5A.3 (2015).
    [Crossref]
  33. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
    [Crossref] [PubMed]
  34. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
    [Crossref]
  35. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
    [Crossref]
  36. S. T. Naimi, S. P. Ó. Dúill, and L. P. Barry, “Detailed investigation of the pump phase noise tolerance for wavelength conversion of 16-QAM signals using FWM,” J. Opt. Commun. Netw. 6(9), 793–800 (2014).
    [Crossref]

2015 (3)

2014 (9)

S. T. Naimi, S. P. Ó. Dúill, and L. P. Barry, “Detailed investigation of the pump phase noise tolerance for wavelength conversion of 16-QAM signals using FWM,” J. Opt. Commun. Netw. 6(9), 793–800 (2014).
[Crossref]

K.-P. Ho and J. M. Kahn, “Linear propagation effects in mode-division multiplexing systems,” J. Lightwave Technol. 32(4), 614–628 (2014).
[Crossref]

G. W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[Crossref] [PubMed]

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
[Crossref] [PubMed]

A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
[Crossref]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22(1), 127–135 (2014).
[Crossref] [PubMed]

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

J. Carpenter, S. G. Leon-Saval, J. R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M. A. F. Roelens, B. J. Eggleton, and J. Schröder, “1x11 few-mode fiber wavelength selective switch using photonic lanterns,” Opt. Express 22(3), 2216–2221 (2014).
[Crossref] [PubMed]

2013 (4)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5–6), 429–440 (2013).

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[Crossref] [PubMed]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

2012 (3)

2011 (2)

2010 (1)

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

2009 (1)

2008 (1)

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

2005 (1)

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

2000 (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

1998 (1)

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” Journal on Selected Areas in Communications 16(7), 1061–1073 (1998).
[Crossref]

1994 (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Adams, R.

Al Amin, A.

Amezcua Correa, R.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Antonio Lopez, E.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Argyros, A.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5–6), 429–440 (2013).

Armstrong, J.

Barry, L. P.

Baxter, G.

Birks, T. A.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Bland-Hawthorn, J.

Bogoni, A.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

Bolle, C.

Bramerie, L.

Brilland, L.

Burrows, E. C.

Carpenter, J.

Chagnon, M.

Chandrasekhar, S.

Chang, G.-K.

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

Chartier, T.

Chen, L. R.

Chen, X.

Chitgarha, M. R.

Contestabile, G.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

Costa e Silva, M.

de Waardt, H.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Dimarcello, F. V.

Ding, Y.

Dinu, M.

Dúill, S. P. Ó.

Eggleton, B. J.

Esmaeelpour, M.

Essiambre, R.-J.

Farrell, P. M.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

Filion, B.

Fini, J. M.

Fishteyn, M.

Foschini, G. J.

Frisken, S.

Gao, S.

Gay, M.

Gnauck, A. H.

Gris-Sánchez, I.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Gui, C.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Hinton, K.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

Ho, K.-P.

Hu, H.

Huang, M.-F.

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

Huang, Y.-K.

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

Huijskens, F. M.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994).
[Crossref]

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Ip, E.

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

Jin, Q.

Jopson, R. M.

Kahn, J. M.

Kawanishi, T.

Khaleghi, S.

Kitayama, K.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

Koonen, A. M. J.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Larochelle, S.

Le, S. D.

Lenglé, K.

Leon-Saval, S. G.

Li, A.

Li, C.

Li, G.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Li, J.

Li, X.

Lingle, R.

Liu, X.

Lu, G. W.

Malekiha, M.

Maruta, A.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

McCurdy, A. H.

Méchin, D.

Monberg, E. M.

Mukherjee, B.

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” Journal on Selected Areas in Communications 16(7), 1061–1073 (1998).
[Crossref]

Mumtaz, S.

Naimi, S. T.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ng, W. C.

Nguyen, A. T.

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Okonkwo, C. M.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ou, H.

Pan, W.

Peckham, D. W.

Peucheret, C.

Plant, D. V.

Porzi, C.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

Poti, L.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

Ramamurthy, B.

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” Journal on Selected Areas in Communications 16(7), 1061–1073 (1998).
[Crossref]

Randel, S.

Raskutti, G.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Roelens, M. A. F.

Rusch, L. A.

Ryf, R.

Sakamoto, T.

Salazar-Gil, J. R.

Saval, S. G. L.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Schröder, J.

Schülzgen, A.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Shieh, W.

Sierra, A.

Simon, J.-C.

Spasojevic, M.

Stewart, L.

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Taunay, T. F.

Thomson, R. R.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Thual, M.

Toupin, P.

Troles, J.

Tucker, R. S.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

van Uden, R. G. H.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, J.

Willner, A. E.

Winzer, P. J.

Xia, C.

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Xiao, X.

Xie, C.

Xu, J.

Yan, M. F.

Yang, Q.

Ye, J.

Yerolatsitis, S.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Yilmaz, O. F.

Yoshida, Y.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

Yu, J.

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

Yu, S.

Zhu, B.

Adv. Opt. Photonics (1)

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. L. Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, “Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA,” IEEE Photonics Technol. Lett. 17(3), 633–635 (2005).
[Crossref]

M.-F. Huang, J. Yu, Y.-K. Huang, E. Ip, and G.-K. Chang, “Wavelength converter for polarization-multiplexed 100-G transmission with multilevel modulation using a bismuth oxide-based nonlinear fiber,” IEEE Photonics Technol. Lett. 22(24), 1832–1834 (2010).
[Crossref]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photonics Technol. Lett. 25(9), 791–794 (2013).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quant. Electron. (1)

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” J. Sel. Top. Quant. Electron. 14(3), 938–945 (2008).
[Crossref]

Journal on Selected Areas in Communications (1)

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” Journal on Selected Areas in Communications 16(7), 1061–1073 (1998).
[Crossref]

Nanophotonics (1)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5–6), 429–440 (2013).

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. Amezcua Correa, E. Antonio Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (8)

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
[Crossref] [PubMed]

X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer,” Opt. Express 20(13), 14302–14307 (2012).
[Crossref] [PubMed]

J. Carpenter, S. G. Leon-Saval, J. R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M. A. F. Roelens, B. J. Eggleton, and J. Schröder, “1x11 few-mode fiber wavelength selective switch using photonic lanterns,” Opt. Express 22(3), 2216–2221 (2014).
[Crossref] [PubMed]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22(1), 127–135 (2014).
[Crossref] [PubMed]

P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
[Crossref] [PubMed]

G. W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[Crossref] [PubMed]

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[Crossref] [PubMed]

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (7)

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “AlGaAs-on-insulator nanowire with 750 nm FWM bandwidth, −9 dB CW conversion efficiency, and ultrafast operation enabling record Tbaud wavelength conversion,” in Optical Fiber Communication Conference, Paper Th5A.3 (2015).
[Crossref]

S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. E. Willner, “λ-conversion of 160-Gbit/s PDM 16-QAM using a single periodically-poled lithium niobate waveguide,” in Optical Fiber Communication Conference, Paper OWG5 (2011).
[Crossref]

J. Bohn, J. Carpenter, S. Gross, M. Withford, and J. Schroder, “Characterization of laser inscribed on-chip photonic lanterns with different core distances,” in European Conference on Optical Communication (ECOC), paper P.1.14 (2015).
[Crossref]

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference, Paper OTu2D.5 (2013).

N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R. J. Essiambre, Y. Jung, Q. Kang, J. K. Sahu, S. U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous space-division multiplexing and joint wavelength switching demonstration,” in Optical Fiber Communication Conference, Paper Th5C.5 (2015).
[Crossref]

J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference, Paper Th5C.2 (2015).
[Crossref]

K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference, Paper Th5C.3 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Comparison of wavelength conversion (WC) of an MDM superchannel by O-E-O conversion and all-optical (AO) WC using a single multimode nonlinear element (MM-NE). (b) and (c) are MDM-AOWC schemes using single mode (SM) NEs. MM to SM conversion is achieved by mode multiplexers (MMUXs) in (b) and adiabatic tapers (ADTs) in (c). (d) Cross polarized dual pump FWM scheme for SM-AOWC used in this work. MMUXs are used to accomplish conversion between multimode and single mode signals. MMF: multimode fiber; Rx: receive; Tx: transmit; DSP: digital signal processing; MIMO: Multiple-input multiple-output. PBS: polarization (pol.) beam splitter. SOA: semiconductor optical amplifier.
Fig. 2
Fig. 2 (a) CE as a function of the frequency detuning (Δf) between the signal and pump 2 while keeping the frequency spacing between pump 1 and pump 2 fixed at 125 GHz (1 nm). The signal and pump power levels at the input of the SOAs are 1.8 dBm and 5 dBm, respectively. (b) CE as a function of Δf between the two pumps while keeping the detuning between the signal and pump 2 fixed at 87.5 GHz (0.7 nm). The signal and pump power at the input of the SOAs are −3 dBm and 5 dBm, respectively.
Fig. 3
Fig. 3 CE as a function of total pump power at the input of (a) SOA-A (b) SOA-B (c) SOA-C for signal power at the input of the SOAs at −6 dBm (squares), −3 dBm (up triangles), 0 dBm (down triangles) and 3 dBm (filled circles).
Fig. 4
Fig. 4 Experimental setup of the proposed MDM-AOWC. LD: laser diode, MOD: modulator, AWG: arbitrary waveform generator, PL: photonic lantern, FMF: few mode fiber, PBS: polarization beam splitter, SOA: semiconductor optical amplifier, WSS: wavelength selective switch, CoRx: polarization diversity coherent receiver, OSC: oscilloscope, DSP: digital signal processing, AOWC: all-optical wavelength conversion, Tx: transmitter, Rx: receiver.
Fig. 5
Fig. 5 (a) Optical spectrum at the output of SOA-A. (b) Optical spectrum at the input TA (blue solid line) and TB (red dashed line) of PL3.
Fig. 6
Fig. 6 Optimization of the signal and pump power levels at the input of the SOAs. (a) Measured BER as a function of signal power while keeping the total input pump power at 8.2 dBm (red-star line) and 9.5 dBm (blue line with filled circles). (b) Measured BER as a function of pump power while keeping the signal power at −3.4 dBm (identical for all tributaries). Pump conditions are identical for all tributaries.
Fig. 7
Fig. 7 Impact of signal power and OSNR imbalance among three tributaries at the input of PL3. (a) BER as a function of signal power of TA while keeping the power of TB and TC at 0 dBm. (b) BER as a function of OSNR of the signal of TA while the OSNR values of TB and TC are 18.9 dB and 19.7 dB, respectively. The OSNR of TA is varied by changing the current of SOA-A. The signal power levels of all tributaries are set to 0 dBm in this case.
Fig. 8
Fig. 8 BER performance of added and wavelength converted MDM-PDM-OFDM QPSK signal. All points are averaged over six modes and three measurements. The OSNR is measured at the input of PL3 and averaged over three tributaries.
Fig. 9
Fig. 9 BER performance of wavelength converted MDM-PDM-OFDM 16-QAM signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E idler,y E p1,x E p2,y E sig,x * E idler,x E p1,x E p2,y E sig,y * .
[ E idler,x E idler,y ]=[ 0 η yx K η xy K 0 ][ E sig,x E sig,y ]= T i [ E sig,x E sig,y ],
T SMWC =[ T 1 0 0 0 T 2 0 0 0 0 0 T N ].
T MDMWC =U T SMWC U

Metrics