Abstract

In this work we report on a single photon detector system which offers near-unity detection efficiency using waveguide-coupled superconducting nanowires with lengths on the order of 1 μm. This is achieved by embedding the nanowires in a racetrack resonator where the interaction time with the photons trapped in the cavity is increased, thereby allowing for shorter nanowires. We expect this to lead to a higher fabrication yield as the amount of inhomogeneities decreases for shorter nanowires. Our simulations show a system with a 1 μm long superconducting nanowire single photon detector (SNSPD) operating at near-unity detection efficiency using design parameters that can be realistically achieved with conventional fabrication processes. The resonant cavity introduces spectral selectivity to the otherwise broad-band SNSPDs and the cavity induced timing jitter is shown to be insignificant for SNSPDs longer than 1 μm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

15 April 2016: Corrections were made to Fig. 2 and Fig. 3.


OSA Recommended Articles
Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity

Julian Münzberg, Andreas Vetter, Fabian Beutel, Wladick Hartmann, Simone Ferrari, Wolfram H. P. Pernice, and Carsten Rockstuhl
Optica 5(5) 658-665 (2018)

Multispectral superconducting nanowire single photon detector

Hao Li, Heqing Wang, Lixing You, Peng Hu, Weidong Shen, Weijun Zhang, Xiaoyan Yang, Lu Zhang, Hui Zhou, Zhen Wang, and Xiaoming Xie
Opt. Express 27(4) 4727-4733 (2019)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  2. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
    [Crossref] [PubMed]
  3. D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).
  4. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  5. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
    [Crossref] [PubMed]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
    [Crossref] [PubMed]
  7. S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
    [Crossref]
  8. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
    [Crossref]
  9. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
    [Crossref]
  10. K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [Crossref] [PubMed]
  11. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
    [Crossref] [PubMed]
  12. P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
    [Crossref]
  13. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
    [Crossref]
  14. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref] [PubMed]
  15. G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
    [Crossref]
  16. C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
    [Crossref]
  17. R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
    [Crossref]
  18. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
    [Crossref]
  19. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  20. Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
    [Crossref]
  21. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
    [Crossref] [PubMed]
  22. V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
    [Crossref]
  23. E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
    [Crossref]
  24. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
    [Crossref]
  25. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref] [PubMed]
  26. D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
    [Crossref]
  27. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [Crossref] [PubMed]
  28. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [Crossref] [PubMed]
  29. G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
    [Crossref]
  30. J. Song, A. L. Eu-Jin, X. Luo, Y. Huang, X. Tu, L. Jia, Q. Fang, T.-Y. Liow, M. Yu, and G. Q. Lo, “Microring resonator photodetector for enhancement in L-band performance,” Opt. Express 22(22), 26976–26984 (2014).
    [Crossref] [PubMed]
  31. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/mode/ .
  32. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
    [Crossref] [PubMed]
  33. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  34. D. G. Rabus, Integrated Ring Resonators (Springer-Verlag, 2007).
  35. M. Mesiya, Contemporary Communication Systems (McGraw-Hill Education, 2012).
  36. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
    [Crossref] [PubMed]
  37. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer-Verlag, 2011).
  38. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
    [Crossref]
  39. M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
    [Crossref]
  40. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  41. M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35(19), 3231–3233 (2010).
    [Crossref] [PubMed]

2015 (4)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

2014 (6)

J. Song, A. L. Eu-Jin, X. Luo, Y. Huang, X. Tu, L. Jia, Q. Fang, T.-Y. Liow, M. Yu, and G. Q. Lo, “Microring resonator photodetector for enhancement in L-band performance,” Opt. Express 22(22), 26976–26984 (2014).
[Crossref] [PubMed]

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

2013 (5)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

2012 (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

2011 (4)

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

2010 (3)

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35(19), 3231–3233 (2010).
[Crossref] [PubMed]

2009 (2)

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

2008 (1)

2007 (3)

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

2006 (4)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
[Crossref]

2003 (1)

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Abaeiani, G.

G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
[Crossref]

Agafonov, I.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

Ahmadi, V.

G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
[Crossref]

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Anant, V.

Anders, S.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Baehr-Jones, T.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Beetz, J.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Berggren, K. K.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Blamire, M. G.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Bonneau, D.

Buchholz, F.-I.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Bussières, F.

Casaburi, A.

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Cavalier, P.

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Chen, X.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Chulkova, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Clark, A. S.

Collins, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Constancias, C.

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Crété, D.-G.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Cristiano, R.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Dauler, E. A.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Devizenko, A. Y.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Ding, R.

Divochiy, A. V.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Dorenbos, S. N.

Drakinsky, V.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Dyer, S. D.

Dzardanov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Eggleton, B. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Ejrnaes, M.

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Engin, E.

Englund, D.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Espiau de Lamaëstr, R.

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Eu-Jin, A. L.

Ezaki, M.

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Fang, Q.

Feautrier, P.

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

Febvre, P.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Fiore, A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Fritzsch, L.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Fujiwara, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

Gaggero, A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Gaudio, R.

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gippius, N. A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Gol’tsman, G. N.

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Goltsman, G. N.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Grein, M. E.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Hadfield, R. H.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Herr, A.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Hochberg, M.

Hofherr, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Höfling, S.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Horansky, R. D.

Hu, X.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

Huang, Y.

Hübers, H.-W.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Iizuka, N.

Il’ichev, E.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Ilin, K.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Jia, L.

Kamp, M.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Kaurova, N.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kerman, A. J.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Keyvaninia, S.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Kohlmann, J.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Korneev, A. A.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Korneeva, Y. P.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Korzh, B.

Kouminov, P.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Krauss, T. F.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Kunert, J.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Leoni, R.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Lim, A. E.-J.

Liow, T.-Y.

Lipatov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Lita, A. E.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Louveau, O.

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Luo, X.

Ma, Y.

Manova, N. N.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Marchetti, S.

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Marsili, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Mashanovich, G. Z.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Mattioli, F.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Meyer, H.-G.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Mikhailov, M. Y.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Miki, S.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Mirin, R. P.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

Morand, A.

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Nam, S. W.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Natarajan, C. M.

Nedeljkovic, M.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Niemeyer, J.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Novack, A.

O’Brien, J. L.

Ohira, K.

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

op ’t Hoog, K. P. M.

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

Ortlepp, T.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Pagano, S.

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Pappas, D. P.

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

Pernice, W. H. P.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Pershin, Y. P.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Quaranta, O.

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Rall, D.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

Reardon, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Reed, G. T.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Rogalla, H.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Rosfjord, K. M.

Saghafi, K.

G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
[Crossref]

Sahin, D.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Sasaki, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Schmid, J. H.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Schuck, C.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Schurig, T.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Selvaraj, S. K.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Semenov, A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Shaw, M. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Siegel, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Sivakov, A. G.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Smirnov, K.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Smirnov, K. V.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

Sobolewsk, R.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Song, J.

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

Steel, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stolz, R.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Suzuki, N.

Tang, H. X.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Tanner, M. G.

Tarte, E.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

ter Brake, H. J. M.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Terai, H.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Thompson, M. G.

Thomson, D. J.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Toepfer, H.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Tu, X.

Vakhtomin, Y. B.

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

van de Sanden, M. C. M.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

Van Thourhout, D.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Vayshenker, I.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verevkin, A.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Verheijen, M. A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

Verma, V. B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Villegier, J.-C.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Villégier, J.-C.

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Vissers, M. R.

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

Vo, T. D.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Voronov, B. M.

Wang, Z.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

Watts, M. R.

Weber, J.-W.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

Xiong, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Xu, D.-X.

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

Yamashita, T.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Yang, J. K.

Yang, J. K. W.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[Crossref] [PubMed]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

Yang, S.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Yoshida, H.

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Yu, M.

Zagoskin, A. M.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Zbinden, H.

Zhang, J.

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

Zhang, Y.

Zhou, Z.

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

Zorin, A. B.

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Zwiller, V.

AIP Adv. (1)

P. Cavalier, J.-C. Villégier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1(4), 042120 (2011).
[Crossref]

Appl. Phys. Lett. (5)

R. Gaudio, K. P. M. op ’t Hoog, Z. Zhou, D. Sahin, and A. Fiore, “Inhomogeneous critical current in nanowire superconducting single-photon detectors,” Appl. Phys. Lett. 105(22), 222602 (2014).
[Crossref]

A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol’tsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 90(10), 101110 (2007).
[Crossref]

V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Pappas, R. P. Mirin, and S. W. Nam, “Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film,” Appl. Phys. Lett. 105(2), 022602 (2014).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800210 (2015).
[Crossref]

D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraj, “Silicon photonic integration platform—have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20(4), 8100217 (2014).

IEEE Photonics Technol. Lett. (2)

G. Abaeiani, V. Ahmadi, and K. Saghafi, “Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications,” IEEE Photonics Technol. Lett. 18(15), 1597–1599 (2006).
[Crossref]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

IEEE Trans. Appl. Supercond. (3)

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewsk, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11(1), 574–577 (2001).
[Crossref]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17(2), 285–288 (2007).
[Crossref]

G. N. Gol’tsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13(2), 192–195 (2003).
[Crossref]

J. Appl. Phys. (1)

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108(1), 014507 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. Constancias, R. Espiau de Lamaëstr, O. Louveau, P. Cavalier, and J.-C. Villégier, “Patterning issues in superconducting nanowire single photon detector fabrication,” J. Vac. Sci. Technol. B 25(6), 2041 (2007).
[Crossref]

Nat. Commun. (4)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Opt. Eng. (1)

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 081907 (2014).
[Crossref]

Opt. Express (8)

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

K. M. Rosfjord, J. K. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[Crossref] [PubMed]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008).
[Crossref] [PubMed]

X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express 19(1), 17–31 (2011).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

J. Song, A. L. Eu-Jin, X. Luo, Y. Huang, X. Tu, L. Jia, Q. Fang, T.-Y. Liow, M. Yu, and G. Q. Lo, “Microring resonator photodetector for enhancement in L-band performance,” Opt. Express 22(22), 26976–26984 (2014).
[Crossref] [PubMed]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Physica C (1)

S. Anders, M. G. Blamire, F.-I. Buchholz, D.-G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. J. M. ter Brake, H. Toepfer, J.-C. Villegier, A. M. Zagoskin, and A. B. Zorin, “European roadmap on superconductive electronics – status and perspectives,” Physica C 470(23-24), 2079–2126 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

Supercond. Sci. Technol. (2)

Y. P. Korneeva, M. Y. Mikhailov, Y. P. Pershin, N. N. Manova, A. V. Divochiy, Y. B. Vakhtomin, A. A. Korneev, K. V. Smirnov, A. G. Sivakov, A. Y. Devizenko, and G. N. Goltsman, “Superconducting single-photon detector made of MoSi film,” Supercond. Sci. Technol. 27(9), 095012 (2014).
[Crossref]

M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 22(5), 055006 (2009).
[Crossref]

Other (4)

D. G. Rabus, Integrated Ring Resonators (Springer-Verlag, 2007).

M. Mesiya, Contemporary Communication Systems (McGraw-Hill Education, 2012).

D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer-Verlag, 2011).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/mode/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Diagrams of an SNSPD inside a SOI waveguide racetrack resonator cavity. Four main regions are defined: the bus waveguide, the racetrack resonator, the coupling region between resonator and bus waveguide and the nanowire region inside the racetrack resonator. (a) Artistic depiction of the system. Light, Ein, is pumped and collected, Eout, in the bus waveguide. a: transmission coefficient per unit length, T: transmissivity, R: reflectivity, E0: electric field inside racetrack at position 0, EL: electric field inside racetrack at the end of one roundtrip at position L. The nanowire region is placed within the racetrack. (b) Simulated intensity distribution of a critically coupled cavity system with a 1.13 µm long SNSPD and a cavity length of 82.83 µm at 1553 nm, obtained using a commercial-grade simulator eigenmode solver and varFDTD propagator for the fundamental quasi-TE mode [31].
Fig. 2
Fig. 2 (a) Change in detector efficiency with nanowire length. The curves represent different cavity types with transmissivity values in the coupling region between 0.1 (black line) and 0.9 (green dash-dot line), and for a nanowire region without the cavity (magenta dash-dot-dot line). (b) Efficiency as a function of coupler transmissivity. Four systems with nanowire lengths between 1 and 4 µm (black line – green dash-dot line) are shown. Inset: Efficiencies at matching versus nanowire length with coupler transmissivities optimized at each point for critical coupling.
Fig. 3
Fig. 3 (a) Efficiency response versus wavelength for various nanowire lengths between 1 μm and 10 μm. The response is dependent on wavelength due to the presence of a cavity. Racetrack size: 83 μm. (b) FWHM of the detection efficiency response to wavelength versus nanowire length for different cavity sizes. Calculation parameters for (a) and (b): critically coupled, CW input and -2 dB/cm waveguide loss. (c) Efficiency response to different input pulses for 30 μm and 83 μm racetracks. Calculation parameters: 1 μm nanowire length, center wavelength around 1550 nm, critically coupled, -2 dB/cm waveguide loss. (d) Maximum efficiency at critical coupling versus waveguide loss (main image, 83 μm racetrack length) and racetrack length (inset: −2 dB/cm waveguide loss). Calculation parameters: 1 μm nanowire length, CW input and phase matched around 1550 nm.
Fig. 4
Fig. 4 (a) Time between photon arrival in the cavity and 75.8% absorption by the nanowires as a measure of the extrinsic jitter for several racetrack lengths. (b) Data comparison of varFDTD simulations and analytical calculations. System transmission for different lengths of integrated nanowire. Transmissivity at beam splitter: 0.31, racetrack length: 83 μm, CW at 1553 nm.

Tables (1)

Tables Icon

Table 1 Example designs with performance parameters in efficiency, frequency response and jitter. RL: racetrack length, Lnw: nanowire length, FWHMp: FWHM of input pulse, ηcc,pm: efficiency at resonance, ηcc,or: efficiency off-resonance, λr: resonance wavelength, λs-FWHM: FWHM of wavelength response, J: jitter. All data were simulated at critical coupling and for a waveguide loss of −2 dB/cm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E out ( λ ) = r α e i θ ( λ ) 1 r α e i θ ( λ ) E in ( λ )
P ( λ ) abs, total = 1 ( E out ( λ ) E in ( λ ) ) 2 = 1 ( r α e i θ ( λ ) 1 r α e i θ ( λ ) ) 2
F n w = ( 1 η si, beg ) η nw n = 0 ( 1 η nw ) n ( 1 η s i ) n = ( 1 η si, beg ) η nw 1 ( 1 η nw ) ( 1 η si )
η = P ( λ CW ) abs, total F nw = ( 1 ( r α e i θ ( λ CW ) 1 r α e i θ ( λ CW ) ) 2 ) ( 1 η si, beg ) η det 1 ( 1 η det ) ( 1 η si )
η pm = ( 1 ( r α 1 r α ) 2 ) ( 1 η si, beg ) η det 1 ( 1 η det ) ( 1 η si )
η cc = ( 1 ( r ( 1 e i θ ( λ CW ) ) 1 r 2 e i θ ( λ CW ) ) 2 ) ( 1 η si, beg ) η det 1 ( 1 η det ) ( 1 η si )
η pm, cc = ( 1 η si, beg ) η det 1 ( 1 η det ) ( 1 η si )
η pulse = 1 ( E out ( f ) 2 d f E in ( f ) 2 d f )

Metrics