Abstract

We present a method to discriminate between analytes based on their size using multiple wavelengths in a Young interferometer. We measured the response of two wavelengths when adding 85 nm beads (representing specific binding), protein A (representing non-specific binding) and D-glucose (inducing a bulk change) to our sensor. Next, the measurements are analysed using a approach based on theoretical analysis, and a ratio-based analysis approach to discriminate between bulk changes and the binding of the different sized substances. Moreover, we were able to discriminate binding of 85 nm beads from binding of protein A (~2 nm) in a blind experiment using the ratio-based approach. This can for example be used to discriminate specific analyte binding of larger particles from non-specific binding of smaller particles. Therefore, we believe that by adding size-selectivity we can strongly improve the performance of the Young interferometer sensor and integrated optical interferometric sensors in general.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size-selective detection in integrated optical interferometric biosensors

Harmen K.P. Mulder, Aurel Ymeti, Vinod Subramaniam, and Johannes S. Kanger
Opt. Express 20(19) 20934-20950 (2012)

Mass-transport limitations in spot-based microarrays

Ming Zhao, Xuefeng Wang, and David Nolte
Biomed. Opt. Express 1(3) 983-997 (2010)

Specific detection of proteins using photonic crystal waveguides

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy
Opt. Express 16(20) 15949-15957 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
    [Crossref]
  2. G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
    [Crossref]
  3. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  4. H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
    [Crossref] [PubMed]
  5. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [Crossref] [PubMed]
  6. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express 16(20), 15949–15957 (2008).
    [Crossref] [PubMed]
  7. A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39(34), 6396–6405 (2000).
    [Crossref] [PubMed]
  8. C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
    [Crossref]
  9. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [Crossref] [PubMed]
  10. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
    [Crossref]
  11. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
    [Crossref]
  12. C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
    [Crossref]
  13. G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
    [Crossref] [PubMed]
  14. R. A. Abram and S. Brand, “Some theory of a dual-polarization interferometer for sensor applications,” J. Phys. D Appl. Phys. 48(12), 125101 (2015).
    [Crossref]
  15. H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20(19), 20934–20950 (2012).
    [Crossref] [PubMed]
  16. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [Crossref] [PubMed]
  17. S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
    [Crossref] [PubMed]
  18. M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
    [Crossref] [PubMed]

2015 (1)

R. A. Abram and S. Brand, “Some theory of a dual-polarization interferometer for sensor applications,” J. Phys. D Appl. Phys. 48(12), 125101 (2015).
[Crossref]

2014 (1)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

2012 (1)

2010 (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

2008 (3)

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express 16(20), 15949–15957 (2008).
[Crossref] [PubMed]

2007 (2)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

2003 (2)

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

2002 (1)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

2001 (2)

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[Crossref]

1998 (2)

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
[Crossref]

S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
[Crossref] [PubMed]

Abram, R. A.

R. A. Abram and S. Brand, “Some theory of a dual-polarization interferometer for sensor applications,” J. Phys. D Appl. Phys. 48(12), 125101 (2015).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bielmann, M.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Borel, P. I.

Brand, S.

R. A. Abram and S. Brand, “Some theory of a dual-polarization interferometer for sensor applications,” J. Phys. D Appl. Phys. 48(12), 125101 (2015).
[Crossref]

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39(34), 6396–6405 (2000).
[Crossref] [PubMed]

Buriak, J. M.

Buswell, S. C.

Coen, M. C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Cottier, K.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

Cross, G. H.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Dangel, R.

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
[Crossref]

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Evoy, S.

Fan, X.

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Frandsen, L. H.

Freeman, N. J.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Galli, C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Gao, H.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goldberg, B. B.

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

Greve, J.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

Gröning, P.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hato, M.

S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
[Crossref] [PubMed]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Kanger, J. S.

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20(19), 20934–20950 (2012).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Kim, G. D.

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Kim, K. D.

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Kjems, J.

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

Krauter, R.

Kristensen, M.

Kunz, R. E.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

Künzel, C.

Lambeck, P. V.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[Crossref]

Lee, H. S.

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Lee, S. S.

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Lehmann, R.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Lukosz, W.

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
[Crossref]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Mulder, H. K. P.

Murata, M.

S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
[Crossref] [PubMed]

Ohnishi, S.

S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
[Crossref] [PubMed]

Peel, L. L.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Popplewell, J. F.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Reeves, A. A.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Ruane, M.

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Schlapbach, L.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Schulte, H.

Skivesen, N.

Son, G. S.

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
[Crossref]

Stefan, M.

Subramaniam, V.

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Swann, M. J.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

Têtu, A.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Unlu, M. S.

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

Van, V.

Voirin, G.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Wijn, R.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

Wiki, M.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

Worth, C.

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

Wright, V. A.

Ymeti, A.

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express 20(19), 20934–20950 (2012).
[Crossref] [PubMed]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

S. Ohnishi, M. Murata, and M. Hato, “Correlation between surface morphology and surface forces of protein A adsorbed on mica,” Biophys. J. 74(1), 455–465 (1998).
[Crossref] [PubMed]

Biosens. Bioelectron. (4)

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19(4), 383–390 (2003).
[Crossref] [PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

C. Worth, B. B. Goldberg, M. Ruane, and M. S. Unlu, “Surface desensitization of polarimetric waveguide interferometers,” IEEE J. Sel. Top. Quantum Electron. 7(6), 874–877 (2001).
[Crossref]

J. Colloid Interface Sci. (1)

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233(2), 180–189 (2001).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

R. A. Abram and S. Brand, “Some theory of a dual-polarization interferometer for sensor applications,” J. Phys. D Appl. Phys. 48(12), 125101 (2015).
[Crossref]

Opt. Commun. (2)

C. Stamm, R. Dangel, and W. Lukosz, “Biosensing with the integrated-optical difference interferometer: dual-wavelength operation,” Opt. Commun. 153(4-6), 347–359 (1998).
[Crossref]

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281(18), 4644–4647 (2008).
[Crossref]

Opt. Express (3)

Sens. Actuators B Chem. (3)

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, “Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips,” Sens. Actuators B Chem. 91(1-3), 241–251 (2003).
[Crossref]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1-3), 1–7 (2002).
[Crossref]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Two substances discriminated from each other. The Δ N eff measured over time by adding to the sensor surface: a) 85 nm carboxylated polystyrene beads and D-glucose, d) protein A and D-glucose and g) protein A and 85 nm carboxylated polystyrene beads and corresponding determined Δn using the approach based on theoretical analysis (b, e, h) and the ratio-based analysis approach (c, f, i). Corresponding determined Δn using the theoretical and ratio-based analysis method is shown in respectively e) and f).
Fig. 2
Fig. 2 Blind experiment with six samples (A-F) containing 85 nm beads and protein A. a) The measured Δ N eff over time of one measurement of the set of blind experiments b) the corresponding determined Δ n beads and Δ n protein using the ratio-based approach and c) the determined Δn as a function of the by forehand unknown applied concentrations of the 85 nm beads and d) the determined Δn as a function of the by forehand unknown applied concentrations of the protein A. For visibility reasons, the data points A and F of the applied protein concentration are slightly offset but they both correspond to 0.9 μg/ml.
Fig. 3
Fig. 3 Setup. Schematic overview of the setup where L1-L3 are a 50 mW Cobolt Twist 457 nm Single Longitudinal Mode (SLM) Diode-Pumped Solid State (DPSS) laser, a 50 mW Cobolt Jive 561 nm SLM DPSS laser and a 50 mW Cobolt Flamenco 660 nm SLM DPPS laser respectively of which the power is regulated using Thorlabs NDC-100C-4M mounted variable ND filters (N1-N3) of which the reflected light is directed to Thorlabs BT500 beam dumps. Next, Thorlabs, BB1-E02 visible broadband dielectric mirrors (M1-M4) and a Semrock Di01-R561-25x36 dichroic mirror (D1) and a Semrock Di01-R442-25x36 dichroic mirror (D2) are used to overlap the three lasers which are subsequently coupled into a Thorlabs PM460-HP single mode polarization maintaining (SMPM) fiber using a Schäfter + Kirchhoff GmbH 60FC-4-RGBV11-47 apochromatic fiber collimator (F). This fiber is positioned on a ULTRAlign Precision XYZ Positioning Stage (XYZ) with DS-4F High Precision Adjusters to position the fiber with respect to the YI waveguide (W) in order to efficiently couple the light via butt-end coupling into this 4-channel single-mode ridge waveguide. After the light is coupled out of the waveguide it will form an interference pattern which is collimated in the horizontal plane using a Thorlabs, ACY254-075-A cylindrical achromatic lens (C1). Subsequently, the interference pattern passes a Thorlabs LPVISE100-A linear polarizer with 400-700 nm N-BK7 protective windows (P) to filter out possible converted TM polarized light. Next, the light is directed to a Thorlabs, GT-25-03 25mm x 25mm 300 lines/mm visible transmission grating (G) to separate the different wavelengths after which it passes a Thorlabs ACY254-050-A cylindrical achromatic lens (C2) which images the interference patterns on a Alta U30-OE CCD camera (CCD).
Fig. 4
Fig. 4 The Δ N eff measured at 457 nm (blue line) and at 660 nm (red line) when adding 6.16 mg/ml D-glucose and 1.0 μg/ml 85 nm carboxylated polystyrene beads to the sensor plotted on the left axis and the corresponding ratio R 660/457 (orange line) plotted on the right axis.
Fig. 5
Fig. 5 Measured ratios R λ n / λ m s (dots, diamonds and triangles) for protein A, 85 nm carboxylated polystyrene beads and D-glucose for all combinations of the wavelengths 457 nm, 561 nm and 660 nm. Also indicated is the average of the measured ratios and the corresponding error bars representing the 95% confidence interval.
Fig. 6
Fig. 6 Three substances discriminated from each other. a) The Δ N eff measured over time starting with a PBS buffer, adding 6.16 mg/ml D-glucose at t1 resulting in higher Δ N eff for the longer wavelengths as expected. After applying a washing step at t2,1.0 μg/ml 85 nm beads was added at t3. The response of the shorter wavelengths is now larger. After washing again with PBS at t4, 2.0 μg/ml protein A was added at t5 resulting in a relatively stronger response of the shorter wavelengths. After applying a washing step at t6 the signal decreases due to desorption of the protein A, b) the corresponding Δ n layer ¯ determined with the approach based on theoretical analysis fitting dcore, d1 and d2 based on analysing the measurement with two wavelengths (see example shown in c)), the Δ n substance ¯ determined with ratio-based approach based on d) the ratios measured with the individual substances and e) after tuning the ratios based on analysing the measurement with two wavelengths and two substances of which an example is given in f).
Fig. 7
Fig. 7 Comparison of fluctuations in the Δ N eff as determined by using simulated data (a,b,c) and measured data (d,e,f) in a typical measurement composed of a bulk signal followed by a combination of a bulk signal and a signal arising from surface binding. a) Δ N eff induced (ind) and determined by analysing simulated data without applying a window (det) and the difference between detected and induced Δ N eff , b) the amplitude determined by the FFT corresponding to the Δφ from which Δ N eff is determined, c) Δn as induced and as determined using the ratio-based approach, d) the Δ N eff of a measurement where first D-glucose was added, followed by adding simultaneously D-glucose and 85 nm beads to the sensor surface, e) the corresponding amplitude of the FFT-spectrum at the measured spatial frequency and f) the determined Δn due to binding of the beads and bulk changes due to the D-glucose.
Fig. 8
Fig. 8 The effect of applying different windows on the data on the error in the determined phase change (~ Δ N eff ). a) Δ N eff induced and the difference between determined and induced Δ N eff (NE) applying no window (magenta) and a Blackman-Nuttall window (green), b) the peak-to-peak (pk-pk) values of the fluctuations in Δ N eff (for both NE and CT) for the different applied window, c) the measured Δ N eff of a measurement channel and the CT in a side channel and d) the pk-pk values of the fluctuations in Δ N eff due to CT as a function of the applied windowing function of the interference pattern.
Fig. 9
Fig. 9 Typical camera image illustrating three measured interference patterns from three different wavelengths, 660 nm, 561 nm and 457 nm, from top till bottom.
Fig. 10
Fig. 10 a, c, e, g) A Δ N eff over time with various added linear drifts and b, d, f, h) the corresponding determined Δ n unscaled for binding and bulk signal, determined with ratio-based approach, illustrating that linear drift in Δ N eff results is enhanced linear drift in Δ n unscaled .
Fig. 11
Fig. 11 Measurement where D-glucose and 85 nm beads are added to the sensor analysed with approach base on theoretical analysis and with ratio-based approach. a) Effective refractive index change over time at λ 1 = 457 nm and λ 2 = 660 nm for addition of 6.16 mg/ml D-glucose only and addition of 6.16 mg/ml D-glucose and 1.0 μg/ml 85 nm beads simultaneously, b) the determined Δn with the approach based on theoretical analysis and c) determined Δn with the ratio-based approach.
Fig. 12
Fig. 12 Deviation in Δ n l 1 Δ n l 1 determined with the approach based on the theoretical analysis as a function of the input parameters dcore and d1. The deviation in Δ n l 1 Δ n l 1 is given in terms of percentage and is determined compared to the correct value of Δ n l 1 Δ n l 1 based on dcore = 63 nm and d1 = 65 nm which are represented by the dashed lines. The dotted lines show for which d1 at the correct value of dcore (and vice versa) the Δ n 1 Δ n 2 deviates 10% from the correct values.
Fig. 13
Fig. 13 Deviations in Δ n bead and Δ n glucose determined with the ratio-based approach as a function of the input parameters R λ k / λ l glucose and R λ k / λ l bead . The deviations in Δ n bead (a) and Δ n glucose (b) are given in terms of percentage and is determined compared to the correct value of Δ n bead and Δ n glucose respectively based on R λ k / λ l glucose = 1.220 and R λ k / λ l bead = 0.895 which are represented by the dashed lines. The dotted lines show for which R λ k / λ l glucose at the correct value of R λ k / λ l bead (and vice versa) the Δ n bead and Δ n glucose deviate 10% from the correct values.
Fig. 14
Fig. 14 Images of sensing windows after measurements with fluorescent beads a) before and b) after cleaning. Both images are taken with a 10x Plan Apo objective and an Andor DU-885 camera at an exposure time of 2 seconds and a multiplier of 80.

Tables (1)

Tables Icon

Table 1 Measured effective refractive index ratios. Experimentally determined Δ N eff ratios at λ 1 = 457 nm, λ 2 = 561 nm and λ 3 = 660 nm determined for D-glucose, 85 nm carboxylated polystyrene beads and protein A.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ n l ¯ = S ¯ ¯ 1 Δ N eff ¯ ,
R λ k / λ l s m = Δ N eff, λ k s m Δ N eff, λ l s m .
Δ n s ¯ = Θ ¯ ¯ 1 R ¯ ¯ 1 Δ N eff ¯ ,
Δ N eff, λ k = N eff, λ k n s m Δ n s m ,
Δ N eff ¯ = S sub ¯ ¯ Δ n s ¯ ,
R λ k / λ l s m = Δ N eff, λ k s m Δ N eff, λ l s m = N eff, λ k s m / n s m Δ n s m N eff, λ l s m / n s m Δ n s m = s k,m s l,m .
Δ N eff ¯ = R ¯ ¯ Θ ¯ ¯ Δ n s ¯ ,
Δ n s ¯ = Θ ¯ ¯ 1 R ¯ ¯ 1 Δ N eff ¯ .
[ Δ n 1 Δ n 2 ]=M[ Δ N eff,1 + c 1 t Δ N eff,2 + c 2 t ]=M[ Δ N eff,1 Δ N eff,2 ]+M[ c 1 c 2 ]t,

Metrics