Abstract

We study the field-of-view (FOV) of an upconversion imaging system that employs an Amplified Spontaneous Emission (ASE) fiber source to illuminate a transmission target. As an intermediate case between narrowband laser and thermal illumination, an ASE fiber source allows for higher spectral intensity than thermal illumination and still keeps a broad wavelength spectrum to take advantage of an increased non-collinear phase-matching angle acceptance that enlarges the FOV of the upconversion system when compared to using narrowband laser illumination. A model is presented to predict the angular acceptance of the upconverter in terms of focusing and ASE spectral width and allocation. The model is experimentally checked in case of 1550-630 nm upconversion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
IR-to-visible image upconverter under nonlinear crystal thermal gradient operation

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany
Opt. Express 26(2) 1133-1144 (2018)

Intra-cavity upconversion to 631  nm of images illuminated by an eye-safe ASE source at 1550  nm

A. J. Torregrosa, H. Maestre, and J. Capmany
Opt. Lett. 40(22) 5315-5318 (2015)

Mid-infrared upconversion imaging using femtosecond pulses

Ashik A. S., Callum F. O’Donnell, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, and C. Pedersen
Photon. Res. 7(7) 783-791 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
    [Crossref]
  2. S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
    [Crossref] [PubMed]
  3. J. E. Midwinter, “Parametric infrared image converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
    [Crossref]
  4. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  5. D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
    [Crossref]
  6. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17(23), 20885–20890 (2009).
    [Crossref] [PubMed]
  7. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett. 35(22), 3796–3798 (2010).
    [Crossref] [PubMed]
  8. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Theory for upconversion of incoherent images,” Opt. Express 20(2), 1475–1482 (2012).
    [Crossref] [PubMed]
  9. A. J. Torregrosa, H. Maestre, and J. Capmany, “Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm,” Opt. Lett. 40(22), 5315–5318 (2015).
    [Crossref] [PubMed]
  10. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  11. R. L. Sutherland, Handbook of Nonlinear Optics (CRC, 2003).
  12. P. Malara, P. Maddaloni, G. Mincuzzi, S. De Nicola, and P. De Natale, “Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams,” Opt. Express 16(11), 8056–8066 (2008).
    [Crossref] [PubMed]
  13. C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

2012 (3)

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “Theory for upconversion of incoherent images,” Opt. Express 20(2), 1475–1482 (2012).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

2011 (1)

S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

1968 (2)

J. E. Midwinter, “Parametric infrared image converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Baldelli, S.

S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Capmany, J.

Dam, J. S.

De Natale, P.

De Nicola, S.

Ding, D.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Fan, S.

Guo, G.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Høgstedt, L.

Hu, Q.

Huang, W.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Karamehmedovic, E.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Maddaloni, P.

Maestre, H.

Malara, P.

Matsukawa, T.

Midwinter, J. E.

J. E. Midwinter, “Parametric infrared image converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

Minamide, H.

Mincuzzi, G.

Nawata, K.

Notake, T.

Pedersen, C.

Qi, F.

Shi, B.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Takida, Y.

Tidemand-Lichtenberg, P.

Torregrosa, A. J.

Zhou, Z.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Zou, X.

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

J. E. Midwinter, “Parametric infrared image converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Nat. Photonics (2)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics 5(2), 75–76 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Ding, Z. Zhou, W. Huang, B. Shi, X. Zou, and G. Guo, “Experimental up-conversion of images,” Phys. Rev. A 86(3), 033803 (2012).
[Crossref]

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics (CRC, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Set-up for the 4-f upconverter system. b) The higher beam divergence of the IR beam, if compared to the pump beam, needed for good resolution allows us to consider the IR beam as containing a set of incoming angles onto the NL crystal. c) In order to upconvert the IR illuminated target area,both collinear and non-collinear upconversion must be fulfilled.For non-collinear upconversion, an IR incoming wavelength slightly different to that of the collinear interaction are required (provided the pump wavelength remains fixed).
Fig. 2
Fig. 2 The number of incoming angles that will be upconverted is given by the product of the IR angular spectrum and the NL crystal angular acceptance. a) Relation between different parts of the illuminated object and the angular spectrum of the IR illumination onto the NL crystal. b) Inverse relation between the IR angular spectrum width and different L1 focal lengths.c) after passing through the NL crystal, the angular content could be clipped if a single-wavelength is used as illumination. d) Under multiple-wavelength illumination the NL crystal angular acceptance can be effectively broadened
Fig. 3
Fig. 3 Band-limited ASE source scheme
Fig. 4
Fig. 4 Increased FOV using ASE can be regarded as the combination of the upconverted patterns by monochromatic spectral components participating in non-collinearphase-matching.
Fig. 5
Fig. 5 Relation between angular and wavelength acceptance of the upconversion process (1064 nm + ~1550 nm→~631 nm) for different upconverter focusing conditions and nonlinear crystal lengths. L = 5 mm for left column and L = 25 mm for right column. a-b)non-collinear QPM condition neglecting illumination angular spectrum, c-d) gaussian illumination with 10 µm waist, e-f) gaussian illumination with 20 µm waist and g-h)gaussian illumination with 30 µm waist.
Fig. 6
Fig. 6 Upconverted patterns for different infrared laser illumination wavelengths (λ0) and upconverter parameters L = 5 mm,Λ = 11.785 μm, T = 22° C and ω0 = 22 µm. Left column - Measured upconverted patterns. Right column - Simulated upconverted patterns. In the measurements of the upconverted patterns both the pump and IR signal powers were adjusted for good visibility of the annular-like patterns.
Fig. 7
Fig. 7 Normalized upconversion efficiency vs IR incoming (external) angles for upconversion at different ASE spectral bandwidths and allocations with λQPM = 1544.5 nm, T = 22° C, Λ = 11.785 μm, ω0 = 22 µm for a) L = 5 mm and b) L = 25 mm.
Fig. 8
Fig. 8 Upconverted gaussian beams are plotted in a), for the different IR illumination spectra in b). Measured and calculated horizontal traces (which can be associated to the FOV of the upconverter) at positions indicated by dotted lines in a) are shown in c) and d) respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E up ( x,y,t )=A e iΔkz dz [ E pump ( x,y,t ) E IR ( x,y,t ) ]
E IR ( k x , k y )=FT[ E IR ( x,y ) ] E IR ( θ,ϕ )= E 0 w 0 2 4π e k 2 ( θ 2 + ϕ 2 ) w 0 2 4
E up ( θ, λ up )=FT[ E up ( x,t ) ]=AΓ(Δk)[ E pump ( θ, λ pump ) E IR ( θ, λ IR ) ]
Γ(Δk)= η(Δk)
E up o ( θ )= d λ up η( Δk ) [ E pump ( θ, λ pump ) E IR ( θ, λ IR ) ]
E up o ( θ )= d λ up η( Δk ) [ g pump ( λ pump ) g IR ( λ IR ) ][ f pump ( θ ) f IR ( θ ) ]
Δk(θ, λ IR )=Δ k 0 + k IR ( 1 k IR k up ) θ 2
E up o ( θ )= d λ IR η( θ, λ IR ) g IR ( λ IR ) f IR ( θ )
I up o (θ)= F IR (θ) λ 1 λ 2 d λ IR η(θ, λ IR ) G IR ( λ IR )
I up (θ) I up (θ')θ'=Mθ

Metrics