Abstract

Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access

Sun-Young Jung, Sang-Min Jung, Hyoung-Joon Park, and Sang-Kook Han
Opt. Express 23(11) 13889-13898 (2015)

Comparison of OFDMA and GFDMA for Next-Generation PONs

Arsalan Saljoghei, Arman Farhang, Colm Browning, Philip Perry, Nicola Marchetti, Linda E. Doyle, and Liam P. Barry
J. Opt. Commun. Netw. 9(12) 1064-1073 (2017)

Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation

Nan Chi, Mengjie Zhang, Jianyang Shi, and Yiheng Zhao
Photon. Res. 5(6) 588-597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
    [Crossref]
  2. G. Wunder, M. Kasparick, S. Brink, F. Schaich, T. Wild, I. Gaspar, E. Ohlmer, S. Krone, N. Michailow, A. Navarro, G. Fettweis, D. Ktenas, V. Berg, M. Dryjanski, S. Pietrzyk, and B. Eged, “5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity,” http://arxiv.org/abs/1212.4034
  3. E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd ed. (Academic, 2015), Ch. 1.
  4. T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
    [Crossref]
  5. D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).
  6. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  7. H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
    [Crossref]
  8. J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
    [Crossref] [PubMed]
  9. J. Vucic, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  10. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  11. T. Komine, S. Haruyama, and M. Nakagawa, “Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication,” in Proceedings of 1st International Symposium on Wireless Pervasive Computing (IEEE, 2006), pp.1–6.
    [Crossref]
  12. A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  13. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  14. H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  15. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  16. S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
    [Crossref]
  17. H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
    [Crossref]
  18. D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
    [Crossref]
  19. H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
    [Crossref]
  20. Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, 3GPP TS 36.321.
  21. T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory 18(1), 2–14 (1972).
    [Crossref]
  22. D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, 2005)
  23. S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
    [Crossref] [PubMed]
  24. S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
    [Crossref]
  25. M. Bellanger, D. LeRuyet, D. Roviras, M. Terré, J. Nossek, L. Baltar, Q. Bai, D. Waldhauser, M. Renfors, T. Ihalainen, A. Viholainen, T. H. Stitz, J. Louveaux, A. Ikhlef, V. Ringset, H. Rustad, M. Najar, C. Bader, M. Payaro, D. Katselis, E. Kofidis, L. Merakos, A. Merentitis, N. Passas, A. Rontogiannis, S. Theodoridis, D. Triantafyllopoulou, D. Tsolkas, D. Xenakis, M. Tanda, T. Fusco, M. Huchard, J. Vandermot, A. Kuzminskiy, F. Schaich, P. Leclair, and A. Zhao, “FBMC Physical Layer: A Primer,” http://www.ict-phydyas.org .
  26. A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
    [Crossref]

2016 (1)

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

2015 (2)

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
[Crossref] [PubMed]

2014 (7)

J. Y. Sung, C. W. Chow, and C. H. Yeh, “Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication,” Opt. Express 22(7), 7538–7543 (2014).
[Crossref] [PubMed]

A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
[Crossref]

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

2013 (3)

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

2012 (3)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

2010 (1)

2009 (1)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (1)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

1972 (1)

T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory 18(1), 2–14 (1972).
[Crossref]

Arslan, H.

A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
[Crossref]

Benjebbour, A.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Biagi, M.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Brink, S.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Cassiau, N.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Chen, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, X.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Chen, Y.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Choudhury, P.

Choudhury, R.

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Chow, C. W.

Chun, H.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Colonnese, S.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Cover, T.

T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory 18(1), 2–14 (1972).
[Crossref]

Cusani, R.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Dryjanski, M.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Eged, B.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Faulkner, G.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Festag, A.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Gaspar, I.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Guvenc, I.

A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Hai, T.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Han, S. K.

S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
[Crossref] [PubMed]

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Han, S.-K.

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

Haruyama, S.

T. Komine, S. Haruyama, and M. Nakagawa, “Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication,” in Proceedings of 1st International Symposium on Wireless Pervasive Computing (IEEE, 2006), pp.1–6.
[Crossref]

Hass, H.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Huang, B.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Jung, P.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Jung, S. M.

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
[Crossref] [PubMed]

Jung, S. Y.

S. Y. Jung, S. M. Jung, H. J. Park, and S. K. Han, “Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access,” Opt. Express 23(11), 13889–13898 (2015).
[Crossref] [PubMed]

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

Kasparick, M.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Kim, D. R.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Kim, D.-R.

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

Kim, H. S.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Kim, H.-S.

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

Kishiyama, Y.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Komine, T.

T. Komine, S. Haruyama, and M. Nakagawa, “Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication,” in Proceedings of 1st International Symposium on Wireless Pervasive Computing (IEEE, 2006), pp.1–6.
[Crossref]

Kottke, C.

Kténas, D.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Langer, K. D.

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Li, H.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Manousiadis, P.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

McKendry, J. J. D.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Mendes, L.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Michailow, N.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Nagata, S.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Nakagawa, M.

T. Komine, S. Haruyama, and M. Nakagawa, “Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication,” in Proceedings of 1st International Symposium on Wireless Pervasive Computing (IEEE, 2006), pp.1–6.
[Crossref]

Nakamura, T.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Nan, L.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Nerreter, S.

Ning, Y.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

O’Brien, D. C.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Oh, Y.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Park, H. J.

Pergoloni, S.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Pietrzyk, S.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Sahin, A.

A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
[Crossref]

Samuel, I. D. W.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Scarano, G.

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

Schaich, F.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Son, Y. H.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Son, Y.-H.

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

Sung, J. Y.

Tang, D.

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Turnbull, G. A.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Vago, P.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Vithanage, E. A.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Vucic, J.

Walewski, J. W.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Wiedmann, F.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Wild, T.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Wo, E. T.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wunder, G.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Xiaodong, S.

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

Xie, E.

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Yang, S. H.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Yang, S.-H.

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

Yeh, C. H.

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Comm. Surv. and Tutor. 16(3), 1312–1338 (2014).
[Crossref]

IEEE Commun. Lett. (1)

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

IEEE Commun. Mag. (2)

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Kténas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, and L. Nan, “Trends in small cell enhancements in LTE advanced,” IEEE Commun. Mag. 51(2), 98–105 (2013).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, R. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (7)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Wo, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Li, X. Chen, B. Huang, D. Tang, and H. Chen, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, and G. Scarano, “Optimized LEDs footprinting for indoor visible light communication networks,” IEEE Photonics Technol. Lett. 28(4), 532–535 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, E. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Hass, G. A. Turnbull, I. D. W. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

IEEE Trans. Inf. Theory (1)

T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory 18(1), 2–14 (1972).
[Crossref]

IET Optoelectron. (1)

D.-R. Kim, S.-H. Yang, S.-K. Han, Y.-H. Son, and H.-S. Kim, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron. 7(6), 125–130 (2013).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Proc. SPIE (1)

D. Tsonev, S. Videv, and H. Haas, “Light fidelity (Li-Fi): towards all-optical networking,” Proc. SPIE 9007, 900702 (2014).

Other (6)

G. Wunder, M. Kasparick, S. Brink, F. Schaich, T. Wild, I. Gaspar, E. Ohlmer, S. Krone, N. Michailow, A. Navarro, G. Fettweis, D. Ktenas, V. Berg, M. Dryjanski, S. Pietrzyk, and B. Eged, “5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity,” http://arxiv.org/abs/1212.4034

E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, 2nd ed. (Academic, 2015), Ch. 1.

T. Komine, S. Haruyama, and M. Nakagawa, “Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication,” in Proceedings of 1st International Symposium on Wireless Pervasive Computing (IEEE, 2006), pp.1–6.
[Crossref]

Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, 3GPP TS 36.321.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, 2005)

M. Bellanger, D. LeRuyet, D. Roviras, M. Terré, J. Nossek, L. Baltar, Q. Bai, D. Waldhauser, M. Renfors, T. Ihalainen, A. Viholainen, T. H. Stitz, J. Louveaux, A. Ikhlef, V. Ringset, H. Rustad, M. Najar, C. Bader, M. Payaro, D. Katselis, E. Kofidis, L. Merakos, A. Merentitis, N. Passas, A. Rontogiannis, S. Theodoridis, D. Triantafyllopoulou, D. Tsolkas, D. Xenakis, M. Tanda, T. Fusco, M. Huchard, J. Vandermot, A. Kuzminskiy, F. Schaich, P. Leclair, and A. Zhao, “FBMC Physical Layer: A Primer,” http://www.ict-phydyas.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Inter-cell interference in VLC based multi-cellular Li-Fi system. Subset illustrates multicarrier-based cell partitioning distinguished by assigning subcarriers to each cell.
Fig. 2
Fig. 2 Schematics of OFDMA-based cell partitioning in multi-cellular asynchronous Li-Fi transmission based on LED-VLC.
Fig. 3
Fig. 3 Asynchronously received signals with CP extension in OFDMA-based cell partitioning. An illustration presents simplified spectrum: (a) in Cell1 window, (b) in Cell2 window.
Fig. 4
Fig. 4 Modulation/demodulation process of OFDM and FBMC. Illustrations show characteristics of generated signals in frequency/time domain.
Fig. 5
Fig. 5 Experimental setup to emulate inter-cell interference between two different cells according to the receiver location.
Fig. 6
Fig. 6 Experimental setup with equalizing circuit to extend 3-dB bandwidth of LED. Inset illustrates evaluation method to emulate interference according to the receiver location.
Fig. 7
Fig. 7 Integrated RF spectra of Cell1 and Cell2 before adaptive modulation: (a) in OFDM and (b) in FBMC.
Fig. 8
Fig. 8 EVM of preamble by varying the receiver location: (a) FBMC, (b) OFDM without CP, and (c) CP-OFDM (4 samples)
Fig. 9
Fig. 9 Bit-loading profiles at center of inter-cell area: (a) FBMC and OFDM, (b) FBMC and CP-extended OFDM
Fig. 10
Fig. 10 Throughput variations according to the receiver location: (a) Cell1 and (b) Cell2.
Fig. 11
Fig. 11 Total capacity of Cell1 and Cell2 according to the receiver location.
Fig. 12
Fig. 12 Frequency responses of used LED with/without equalizer.
Fig. 13
Fig. 13 Spectra of OFDM and FBMC when three cells were served. (a) OFDM at inter-cell. (b) FBMC at inter-cell. (c) OFDM at Cell2. (d) FBMC at Cell2.
Fig. 14
Fig. 14 Bit-loading profiles after adaptive modulation: (a) at center of inter-cell, (b) at center of Cell2.
Fig. 15
Fig. 15 Total capacity and SE according to Cell2 signal powers when Cell1 and Cell3 signal power were fixed in three cells scenario. (a) Total capacity. (b) Spectral efficiency.

Tables (1)

Tables Icon

Table 1 PARAMETER PROPERTIES FOR EXPERIMENTS

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x n i = 1 N kSi X k i e j2πnk N , N g nN1
Y k 1 =N n=0 N1 ( 1 N kS1 X k 1 e j2πnk N + 1 N kS2 X k 2 e j2π( nμ )k N ) e j2πnk N =  X k 1 + n=0 N1 ( kS2 X k 2 e j2πnk N e j2πnk N e j2πμk N )  
Y k 2 = X k 2 + Nμ N n=0 Nμ1 ( kS1 X k 1 e j2πkn N e j2πnk N e j2πkμ N )  + μ N n=Nμ N1 ( kS1 X k 1 e j2πkn N e j2πnk N e j2πk( Nμ ) N )

Metrics