Abstract

The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. The intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dominant chiral optical forces in the vicinity of optical nanofibers

M. H. Alizadeh and B. M. Reinhard
Opt. Lett. 41(20) 4735-4738 (2016)

Fully controlled photonic spin in highly confined optical field

Shuoshuo Zhang, Shenggui Fu, Huanian Zhang, Xiaolu Ge, Zhidong Bai, Yudong Lyu, Rui Zhao, and Zhongsheng Man
Opt. Express 27(23) 33621-33633 (2019)

Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum

Jian Chen, Chenhao Wan, Lingjiang Kong, and Qiwen Zhan
Opt. Express 25(8) 8966-8974 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
    [Crossref] [PubMed]
  2. K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85(6), 061801 (2012).
    [Crossref]
  3. P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
    [Crossref]
  4. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
    [Crossref] [PubMed]
  5. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
    [Crossref] [PubMed]
  6. D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
    [Crossref] [PubMed]
  7. J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
    [Crossref] [PubMed]
  8. A. Aiello and P. Banzer, “Transverse spin of light for all wavefields,” arXiv:1502.05350 (2015).
  9. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
    [Crossref]
  10. M. H. Alizadeh and B. M. Reinhard, “Transverse chiral optical forces by chiral surface plasmon polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
    [Crossref]
  11. K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
    [Crossref] [PubMed]
  12. B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
    [Crossref] [PubMed]
  13. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
    [Crossref] [PubMed]
  14. M. V. Berry, “Optical currents,” J. Opt. A 11(9), 094001 (2009).
    [Crossref]
  15. M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
    [Crossref] [PubMed]
  16. K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
    [Crossref]
  17. A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
    [Crossref]
  18. K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
    [Crossref]
  19. A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
    [Crossref]
  20. A. Espinosa-Soria and A. Martinez, “Extraordinary transverse spin and spin-orbit coupling in silicon waveguides,” arXiv:1507.04859 (2015).
  21. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
    [Crossref]
  22. K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  23. R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
    [Crossref]
  24. V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46(8), 5199–5207 (1992).
    [Crossref] [PubMed]
  25. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
    [Crossref]
  26. F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
    [Crossref] [PubMed]
  27. A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
    [Crossref] [PubMed]
  28. A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
    [Crossref]
  29. S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
    [PubMed]
  30. H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
    [Crossref]
  31. A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
    [Crossref]
  32. A. Canaguier-Durand and C. Genet, “A chiral route to pulling optical forces and left-handed optical torques,” arXiv:1503.02175 (2015).
  33. R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
    [Crossref] [PubMed]
  34. R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
    [Crossref]
  35. M. H. Alizadeh and B. M. Reinhard, “Enhanced optical chirality through locally excited surface plasmon polaritons,” ACS Photonics 2(7), 942–949 (2015).
    [Crossref]
  36. M. H. Alizadeh and B. M. Reinhard, “Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators,” ACS Photonics 2(3), 361–368 (2015).
    [Crossref]
  37. H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
    [Crossref] [PubMed]
  38. G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111(3), 033605 (2013).
    [Crossref] [PubMed]
  39. G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
    [Crossref] [PubMed]
  40. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
    [Crossref] [PubMed]
  41. A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
    [Crossref]
  42. D. S. Bradshaw and D. L. Andrews, “Laser optical separation of chiral molecules,” Opt. Lett. 40(4), 677–680 (2015).
    [Crossref] [PubMed]
  43. G. P. Agrawal, Fiber-Optic Communication Systems (1997).
  44. R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
    [Crossref] [PubMed]
  45. J. A. Stratton, Electromagnetic Theory (John Wiley and Sons, 2007).
  46. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
    [Crossref] [PubMed]
  47. D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
    [Crossref]
  48. R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
    [Crossref] [PubMed]
  49. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
    [Crossref] [PubMed]
  50. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
    [Crossref]

2016 (2)

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

2015 (17)

M. H. Alizadeh and B. M. Reinhard, “Enhanced optical chirality through locally excited surface plasmon polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Transverse chiral optical forces by chiral surface plasmon polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref] [PubMed]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Laser optical separation of chiral molecules,” Opt. Lett. 40(4), 677–680 (2015).
[Crossref] [PubMed]

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

2014 (11)

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
[Crossref] [PubMed]

R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
[Crossref]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

2013 (5)

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111(3), 033605 (2013).
[Crossref] [PubMed]

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

2012 (3)

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85(6), 061801 (2012).
[Crossref]

2011 (1)

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

2010 (2)

A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

2009 (2)

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

M. V. Berry, “Optical currents,” J. Opt. A 11(9), 094001 (2009).
[Crossref]

2004 (1)

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

1992 (1)

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46(8), 5199–5207 (1992).
[Crossref] [PubMed]

Abujetas, D. R.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

Aiello, A.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

Albrecht, B.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Alizadeh, M. H.

M. H. Alizadeh and B. M. Reinhard, “Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced optical chirality through locally excited surface plasmon polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Transverse chiral optical forces by chiral surface plasmon polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

Allen, L.

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

Alonso, M. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Andrews, D. L.

Balykin, V. I.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

Banzer, P.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

Barnett, S. M.

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
[Crossref]

R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
[Crossref] [PubMed]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Bauer, T.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

Bekshaev, A. Y.

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “Optical currents,” J. Opt. A 11(9), 094001 (2009).
[Crossref]

Bliokh, K. Y.

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85(6), 061801 (2012).
[Crossref]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Bradshaw, D. S.

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111(3), 033605 (2013).
[Crossref] [PubMed]

Cameron, R. P.

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
[Crossref]

R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
[Crossref] [PubMed]

Canaguier-Durand, A.

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Capasso, F.

A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Chan, C. T.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

Chen, H.

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Ebbesen, T. W.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

El-Ella, H.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Engheta, N.

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Genet, C.

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Gilson, C. R.

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

Ginzburg, P.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Hakuta, K.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

Hansen, S. L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Hayat, A.

A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Hutchison, J. A.

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Javadi, A.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Jiang, Y.

Jung, J.

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

Karimi, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Kien, F. L.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

Kim, J.

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

Kim, K.-Y.

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

Kiršanske, G.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Kuipers, L.

B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref] [PubMed]

le Feber, B.

B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref] [PubMed]

Lee, B.

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

Lee, E. H.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Lee, I.-M.

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

Leuchs, G.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

Liang, J. Q.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

Liberman, V. S.

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46(8), 5199–5207 (1992).
[Crossref] [PubMed]

Lin, Z.

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Lindlein, N.

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

Liu, S.

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Lodahl, P.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Lu, W.

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Mahmoodian, S.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Marquardt, C.

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

Marrucci, L.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

Midolo, L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Mueller, J. P. B.

A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Nagali, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Neugebauer, M.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

Nori, F.

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
[Crossref]

K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85(6), 061801 (2012).
[Crossref]

O’Connor, D.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

Ostrovskaya, E. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

Paniagua-Domínguez, R.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Piccirillo, B.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Pregnolato, T.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Rauschenbeutel, A.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Reinhard, B. M.

M. H. Alizadeh and B. M. Reinhard, “Transverse chiral optical forces by chiral surface plasmon polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced optical chirality through locally excited surface plasmon polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

Rivas, J. G.

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

Rivas, J. G. M.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Rodriguez-Fortuno, F. J.

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

Rotenberg, N.

B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Santamato, E.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Sayrin, C.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Schneeweiss, P.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

Sciarrino, F.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Slussarenko, S.

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Söllner, I.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Song, J. D.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Speirits, F. C.

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

Stobbe, S.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111(3), 033605 (2013).
[Crossref] [PubMed]

van Dam, D.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Volz, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Wang, N.

H. Chen, Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, “Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves,” Opt. Lett. 40(23), 5530–5533 (2015).
[Crossref] [PubMed]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Wang, S. B.

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

Wurtz, G. A.

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

Yao, A. M.

R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
[Crossref]

R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
[Crossref] [PubMed]

Zayats, A. V.

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

Zel’dovich, B. Y.

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46(8), 5199–5207 (1992).
[Crossref] [PubMed]

ACS Photonics (4)

M. H. Alizadeh and B. M. Reinhard, “Transverse chiral optical forces by chiral surface plasmon polaritons,” ACS Photonics 2(12), 1780–1788 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Enhanced optical chirality through locally excited surface plasmon polaritons,” ACS Photonics 2(7), 942–949 (2015).
[Crossref]

M. H. Alizadeh and B. M. Reinhard, “Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators,” ACS Photonics 2(3), 361–368 (2015).
[Crossref]

D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2(7), 921–929 (2015).
[Crossref]

J. Eur. Opt. Soc. (1)

P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, and G. Leuchs, “The photonic wheel - demonstration of a state of light with purely transverse angular momentum,” J. Eur. Opt. Soc. 8, 13032 (2013).
[Crossref]

J. Opt. (4)

L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011).
[Crossref]

R. P. Cameron, F. C. Speirits, C. R. Gilson, L. Allen, and S. M. Barnett, “The azimuthal component of Poynting’s vector and the angular momentum of light,” J. Opt. 17(12), 125610 (2015).
[Crossref]

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

A. Canaguier-Durand and C. Genet, “Plasmonic lateral forces on chiral spheres,” J. Opt. 18(1), 015007 (2016).
[Crossref]

J. Opt. A (1)

M. V. Berry, “Optical currents,” J. Opt. A 11(9), 094001 (2009).
[Crossref]

J. Phys. Chem. A (1)

R. P. Cameron, A. M. Yao, and S. M. Barnett, “Diffraction gratings for chiral molecules and their applications,” J. Phys. Chem. A 118(19), 3472–3478 (2014).
[Crossref] [PubMed]

Nano Lett. (2)

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. M. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Nanoscale (2)

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5(21), 10582–10590 (2013).
[Crossref] [PubMed]

Nat. Commun. (8)

S. B. Wang and C. T. Chan, “Lateral optical force on chiral particles near a surface,” Nat. Commun. 5, 3307 (2014).
[PubMed]

F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, and A. V. Zayats, “Lateral forces on circularly polarizable particles near a surface,” Nat. Commun. 6, 8799 (2015).
[Crossref] [PubMed]

B. le Feber, N. Rotenberg, and L. Kuipers, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” Nat. Commun. 5, 3300 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref] [PubMed]

D. O’Connor, P. Ginzburg, F. J. Rodríguez-Fortuño, G. A. Wurtz, and A. V. Zayats, “Spin-orbit coupling in surface plasmon scattering by nanostructures,” Nat. Commun. 5, 5327 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Optofluidic sorting of material chirality by chiral light,” Nat. Commun. 5, 3577 (2014).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5, 4491 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9(12), 789–795 (2015).
[Crossref]

New J. Phys. (2)

R. P. Cameron, S. M. Barnett, and A. M. Yao, “Discriminatory optical force for chiral molecules,” New J. Phys. 16(1), 013020 (2014).
[Crossref]

A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Mechanical separation of chiral dipoles by chiral light,” New J. Phys. 15(12), 123037 (2013).
[Crossref]

Opt. Commun. (1)

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4-6), 445–455 (2004).
[Crossref]

Opt. Lett. (2)

Phys. Rep. (1)

K. Y. Bliokh and F. Nori, “Transverse and longitudinal angular momenta of light,” Phys. Rep. 592, 1–38 (2015).
[Crossref]

Phys. Rev. A (6)

K.-Y. Kim, I.-M. Lee, J. Kim, J. Jung, and B. Lee, “Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes,” Phys. Rev. A 86(6), 063805 (2012).
[Crossref]

A. Aiello, C. Marquardt, and G. Leuchs, “Transverse angular momentum of photons,” Phys. Rev. A 81(5), 053838 (2010).
[Crossref]

K. Y. Bliokh and F. Nori, “Transverse spin of a surface polariton,” Phys. Rev. A 85(6), 061801 (2012).
[Crossref]

V. S. Liberman and B. Y. Zel’dovich, “Spin-orbit interaction of a photon in an inhomogeneous medium,” Phys. Rev. A 46(8), 5199–5207 (1992).
[Crossref] [PubMed]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[Crossref]

H. Chen, N. Wang, W. Lu, S. Liu, and Z. Lin, “Tailoring azimuthal optical force on lossy chiral particles in Bessel beams,” Phys. Rev. A 90(4), 043850 (2014).
[Crossref]

Phys. Rev. Lett. (3)

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114(6), 063901 (2015).
[Crossref] [PubMed]

G. Tkachenko and E. Brasselet, “Spin controlled optical radiation pressure,” Phys. Rev. Lett. 111(3), 033605 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, “Transverse spin and momentum in two-wave interference,” Phys. Rev. X 5(1), 011039 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Hayat, J. P. B. Mueller, and F. Capasso, “Lateral chirality-sorting optical forces,” Proc. Natl. Acad. Sci. U.S.A. 112(43), 13190–13194 (2015).
[Crossref] [PubMed]

Science (2)

K. Y. Bliokh, D. Smirnova, and F. Nori, “OPTICS. Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Nanophotonics. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014).
[Crossref] [PubMed]

Other (5)

A. Aiello and P. Banzer, “Transverse spin of light for all wavefields,” arXiv:1502.05350 (2015).

A. Espinosa-Soria and A. Martinez, “Extraordinary transverse spin and spin-orbit coupling in silicon waveguides,” arXiv:1507.04859 (2015).

A. Canaguier-Durand and C. Genet, “A chiral route to pulling optical forces and left-handed optical torques,” arXiv:1503.02175 (2015).

J. A. Stratton, Electromagnetic Theory (John Wiley and Sons, 2007).

G. P. Agrawal, Fiber-Optic Communication Systems (1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of exciting an evanescent wave in glass-air interface by Total Internal Reflection. (b) The vectorial behavior of the (E) and (H) of the evanescent wave excited by a circularly polarized beam. It is observed that the evanescent wave preserves the longitudinal spin of the excitation beam (c) Vectorial electric field in the plane of decay, xz plane. The evanescence of the field combined with the transversality condition leads to spinning electric field in xz plane, which in turn, results in the transverse SAM. (d), (e) The SAM is depicted in a background of electric field distribution. For a circularly polarized evanescent plane wave, the total SAM is a sum of helicity-dependent longitudinal SAM and the helicity-independent transverse SAM. When the circular polarization of the excitation beam reverses, the longitudinal SAM reverses direction while the transverse SAM does not.
Fig. 2
Fig. 2 (a) The schematics of excitation of the weakly-guided mode. (b) For a vertical nanowire with the length of 3 μm and the radius of 50 nm, only the fundamental weakly-guided mode, HE11, is excited. (c) When the radius is increased to 70 nm, still only the HE11 mode can be excited. This is because the radial size of the nanowire is too small to sustain higher modes. (d) This is further confirmed when the scattering cross section is calculated for a group of nanowires with the length of 3 μm but with different radii. It is seen that for radii smaller than about 100 nm, only the fundamental mode is excited. For larger radii, however, higher modes can be excited.
Fig. 3
Fig. 3 (a) The electric field distribution is shown on a cylindrical surface, 10 nm above the nanowire surface for λ = 600 nm. As expected, the peak of the electric field lies along the polarization axis of the incident light (b) Similar to (a), but in this case for the magnetic field. The peaks occur perpendicular to the polarization plane, i.e. in yz plane. (c) The distribution of the electric field is shown in the xz plane, passing through the center of the nanowire. The most relevant feature of the HE11 mode, which is its significant modal spill-over to the surrounding, is clearly seen in this plot. The mode travels along the nanowire with a large evanescent tail. (d) The spinning electric field at the modal resonance results in SAM transverse to the direction of the mode propagation. (e) When the incident light does not couple to any modes, it travels along the nanowire like a plane wave.
Fig. 4
Fig. 4 (a) A bird’s eye view of SAM distribution is shown on a cylindrical surface, 10 nm above the nanowire surface for λ = 600 nm. Interestingly the spin density has larger magnitude in y direction than in x direction. The reason is the occurrence of the peaks of magnetic field in yz plane. This is further confirmed when we look at the vectorial magnetic field on yz plane. (b) Vectorial magnetic field on yz plane for λ = 600 nm. The spinning magnetic field has the major contribution to the transverse spin on this plane. (c) Full vectorial SAM shown for λ = 600 nm. Transverse spin lies along azimuthal direction which is transverse to the k of the mode which is in z direction. It shows azimuthal distribution with an asymmetry caused by larger value in y direction (redder vectors).
Fig. 5
Fig. 5 (a) Electric field distribution for a nanowire with a radius of 150 nm and length of 3μm shown for λ = 640 nm. This nanowire is radially large enough to support higher modes, which are mostly confined to the structure. (b) As a consequence of the confinement of the mode, SAM appears mainly within the structure. (c) A closer look at the vectorial electric field confirms its confinement within the nanowire and its small evanescent tail.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S= S e + S m , S e = ε 0 4ω m(E× E * ), S m = μ 0 4ω m(H× H * ).
[ μ c k c R J m ' ( k c R) J m ( k c R) μ kR H m ' ( k c R) H m ( k c R) ]×[ ε c k c R J m ' ( k c R) J m ( k c R) ε kR H m ' ( k c R) H m ( k c R) ]= m 2 ( k z R) 2 (ωR/c) 2 [ 1 (kR) 2 1 ( k c R) 2 ] 2 .

Metrics