Abstract

Quantum-optical coherence tomography (Q-OCT) provides a dispersion-canceled axial-imaging method, but its practical use is limited by the weakness of the light source and by artifacts in the images. A recent study using chirped-pulse interferometry (CPI) has demonstrated dispersion-canceled and artifact-free OCT with a classical system; however, unwanted background signals still remain after removing the artifacts. Here, we propose a classical optical method that realizes dispersion-canceled, artifact-free, and background-free OCT. We employ a time-reversed system for Q-OCT with transform-limited input laser pulses to achieve dispersion-canceled OCT with a classical system. We have also introduced a subtraction method to remove artifacts and background signals. With these methods, we experimentally demonstrated dispersion-canceled, artifact-free, and background-free axial imaging of a coverglass and cross-sectional imaging of the surface of a coin.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum-optical coherence tomography with classical light

J. Lavoie, R. Kaltenbaek, and K. J. Resch
Opt. Express 17(5) 3818-3826 (2009)

Artifact-free robust single-shot background subtraction for optical coherence tomography

Hari Nandakumar, Swaroop Parameshwaran, Rohith Gamini, and Shailesh Srivastava
OSA Continuum 2(5) 1556-1564 (2019)

An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography

Felix Köttig, Peter Cimalla, Maria Gärtner, and Edmund Koch
Opt. Express 20(22) 24925-24948 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
    [Crossref] [PubMed]
  3. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
    [Crossref]
  4. M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
    [Crossref] [PubMed]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [Crossref] [PubMed]
  6. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
    [Crossref] [PubMed]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
    [Crossref]
  8. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
    [Crossref] [PubMed]
  9. M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
    [Crossref]
  10. W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
    [Crossref]
  11. P. J. Webster, M. S. Muller, and J. M. Fraser, “High speed in situ depth profiling of ultrafast micromachining,” Opt. Express 15, 14967–14972 (2007).
    [Crossref] [PubMed]
  12. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
    [Crossref] [PubMed]
  13. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
    [Crossref] [PubMed]
  14. E. D. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002).
    [Crossref]
  15. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
    [Crossref] [PubMed]
  16. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
    [Crossref]
  17. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [Crossref]
  18. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [Crossref] [PubMed]
  19. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
    [Crossref]
  20. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  21. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
    [Crossref] [PubMed]
  22. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [Crossref] [PubMed]
  23. R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
    [Crossref]
  24. K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
    [Crossref]
  25. J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818 (2009).
    [Crossref] [PubMed]
  26. M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
    [Crossref] [PubMed]
  27. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797–8804 (2007).
    [Crossref] [PubMed]
  28. K. Banaszek, A. S. Radunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
    [Crossref]
  29. B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
    [Crossref]
  30. J. Le Gouët, D. Venkatraman, F. N. Wong, and J. H. Shapiro, “Experimental realization of phase-conjugate optical coherence tomography,” Opt. Lett. 35, 1001–1003 (2010).
    [Crossref] [PubMed]
  31. T. Shirai and A. T. Friberg, “Intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation,” J. Opt. Soc. Am. A 31, 258–263 (2014).
    [Crossref]
  32. P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).
  33. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15, 8760–8769 (2007).
    [Crossref]
  34. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
    [Crossref] [PubMed]
  35. A. Tanaka, R. Okamoto, H. H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, T. Hirohata, S. Kurimura, and S. Takeuchi, “Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement,” Opt. Express 20, 25228–25238 (2012).
    [Crossref] [PubMed]

2015 (1)

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

2014 (1)

2013 (1)

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

2012 (3)

A. Tanaka, R. Okamoto, H. H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, T. Hirohata, S. Kurimura, and S. Takeuchi, “Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement,” Opt. Express 20, 25228–25238 (2012).
[Crossref] [PubMed]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818 (2009).
[Crossref] [PubMed]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

2008 (2)

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (1)

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[Crossref]

2005 (2)

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

2002 (3)

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

E. D. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998–2000 (2002).
[Crossref]

2001 (3)

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

1999 (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

1997 (1)

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

1995 (2)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

1992 (2)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Banaszek, K.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[Crossref]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

Biggerstaff, D.

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

Bizheva, K.

Boppart, S. A.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

Brezinski, M. E.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Bromberg, Y.

Carrasco, S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, J.

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref] [PubMed]

Dayan, B.

Detalle, V.

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

Dufour, M.

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[Crossref]

Fejer, M. M.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Fercher, A.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fraser, J. M.

Friberg, A. T.

T. Shirai and A. T. Friberg, “Intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation,” J. Opt. Soc. Am. A 31, 258–263 (2014).
[Crossref]

P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).

Friesem, A. A.

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

Gauthier, B.

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

Genty, G.

P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hirohata, T.

Hitzenberger, C.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hum, D. S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

Kaltenbaek, R.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818 (2009).
[Crossref] [PubMed]

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

Kang, L.

Karamata, B.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

Kitano, M.

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

Kobayashi, H.

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

Koo, A.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Kurimura, S.

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref] [PubMed]

Lai, K.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Lamouche, G.

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Lau, S.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Lavoie, J.

J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818 (2009).
[Crossref] [PubMed]

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

Le Gouët, J.

Lim, H. H.

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lundeen, J. S.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Mazurek, M. D.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

Mitchell, M. W.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

Muller, M. S.

Nakanishi, T.

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

Nasr, M. B.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Ogawa, K.

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

Okamoto, R.

Okano, M.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pe’er, A.

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

Prevedel, R.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Puvanathasan, P.

Radunsky, A. S.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[Crossref]

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Resch, K.

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

Resch, K. J.

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Ryczkowski, P.

P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).

Saleh, B. E.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Saleh, B. E. A.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Sammut, P.

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

Sampson, D. D.

Schreiter, K. M.

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sergienko, A. V.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Shapiro, J. H.

Shirai, T.

Silberberg, Y.

Smith, E. D.

Souchkov, V.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Southern, J. F.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref] [PubMed]

Sticker, M.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Subashchandran, S.

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Takeuchi, S.

Tamate, S.

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

Tanaka, A.

Tearney, G. J.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Teich, M. C.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Torner, L.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Torres, J. P.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Turunen, J.

P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

Van, P.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Venkatraman, D.

Walecki, W. J.

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Walmsley, I. A.

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[Crossref]

Webster, P. J.

Weissman, N. J.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

Weyman, A. E.

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

Wong, F. N.

Wu, P.

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Zawadzki, R.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
[Crossref] [PubMed]

Zhang, L.

Zvyagin, A. V.

Arch. Ophthalmol. (Chicago) (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[Crossref]

Heart (1)

M. E. Brezinski, G. J. Tearney, N. J. Weissman, S. A. Boppart, B. E. Bouma, M. R. Hee, A. E. Weyman, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound,” Heart 77, 397–403 (1997).
[Crossref] [PubMed]

Insight (1)

M. Dufour, G. Lamouche, V. Detalle, B. Gauthier, and P. Sammut, “Low-coherence interferometry–an advanced technique for optical metrology in industry,” Insight 47, 216–219 (2005).
[Crossref]

J. Biomed. Opt. (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref] [PubMed]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247, 209–219 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Med. (2)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Nat. Phys. (1)

R. Kaltenbaek, J. Lavoie, D. Biggerstaff, and K. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008).
[Crossref]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12, 363–368 (2012).
[Crossref] [PubMed]

Opt. Commun. (3)

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204, 67–74 (2002).
[Crossref]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

K. Banaszek, A. S. Radunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152–155 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (4)

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[Crossref]

K. Ogawa, S. Tamate, T. Nakanishi, H. Kobayashi, and M. Kitano, “Classical realization of dispersion cancellation by time-reversal method,” Phys. Rev. A 91, 013846 (2015).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Phys. Rev. Lett. (4)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[Crossref] [PubMed]

Phys. Stat. Solidi C (1)

W. J. Walecki, K. Lai, V. Souchkov, P. Van, S. Lau, and A. Koo, “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices,” Phys. Stat. Solidi C 2, 984–989 (2005).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Sci. Rep. (1)

M. D. Mazurek, K. M. Schreiter, R. Prevedel, R. Kaltenbaek, and K. J. Resch, “Dispersion-cancelled biological imaging with quantum-inspired interferometry,” Sci. Rep. 3, 1582 (2013).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Skin Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

Other (1)

P. Ryczkowski, J. Turunen, A. T. Friberg, and G. Genty, “Experimental demonstration of spectral intensity optical coherence tomography,” arXiv:1503.03990 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic setup of the TRPI-based OCT system using the time-reversed HOM interferometer. (b) Feynman paths leading to output signals in this setup. (c)–(f) Measurement results without and with the dispersive medium. (c), (d) Measured intensity distributions I(x,y). The four bright lines (i)–(iv) correspond to the four Feynman paths (i)–(iv) in (b). (e), (f) Interferograms derived by integrating the intensity distributions I(x,y) with respect to y. This shows the axial images of the coverglass. Each interferogram is dispersion-insensitive, but has an artifact at the center of the two main signals.
Fig. 2
Fig. 2 (a) Schematic setup implementing the subtraction method. One of the QWPs can be rotated by 90° to switch the peak and dip conditions. (b)–(e), (f)–(i) Experimental results in the peak and dip condition, respectively, without and with the dispersive medium. (b), (c), (f), (g) Measured intensity distributions I(x,y). (d), (e), (h), (i) Interferograms derived by integrating the intensity distributions from y = 50μm to 50μm. The integrated domain is indicated by the area enclosed by a red dashed line in (b), (c), (f), and (g). (j), (k) Interferograms derived by subtracting (h) and (i) from (d) and (e), respectively, which shows dispersion-canceled, artifact-free, and background-free main signals. (l), (m) Interferograms of the auto-correlation, derived from the intensity distributions in the peak condition (b) and (c) at y = 0μm.
Fig. 3
Fig. 3 Experimental setup for demonstrating dispersion-canceled and background-free cross-sectional imaging of the surface of a 100-yen coin by TRPI-based OCT with the subtraction method. The translation x, y, z, and the rotation of QWP1 are controlled by a stage controller.
Fig. 4
Fig. 4 (a) 100-yen coin used in the demonstration of dispersion-canceled and background-free cross-sectional OCT. The arrow shows the scanned z axis. (b) Schematic diagram of the cross-sectional structure of the lower half of the coin. The surface is slightly curved. (c)–(f) The measurement results of the cross-sectional OCT images. The upper [(c), (d)] and lower [(e), (f)] panels show auto-correlation and TRPI-based OCT with the subtraction method, respectively. The left-[(c), (e)] and right-sided [(d), (f)] panels show the cases without and with dispersion, respectively. In all the panels, the coin’s head is oriented downward. The color bar represents the logarithm of the optical power normalized by the maximum value in each panel. (g) Single axial scan at z = 7.5 mm in the panel (f) (blue solid line) and theoretical interferogram in the peak condition integrated from y = 30 μm to 30 μm (green dashed line). (h) Data plotted in log-scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E SFG ( ω ) d ω E ( ω ) H ( ω ) E ( ω ω ) e i ( ω ω ) ( x + y ) / c d ω E ( ω ) H ( ω ) e i ω y / c E ( ω ω ) e i ( ω ω ) x / c .
S ( x ) : = d y I ( x , y ) d ω | E ( ω 0 + ω ) | 2 | E ( ω 0 ω ) | 2 | H ( ω 0 + ω ) | 2 d ω | E ( ω 0 + ω ) | 2 | E ( ω 0 ω ) | 2 H ( ω 0 + ω ) H * ( ω 0 ω ) e i 2 ω x / c .
S ( x ) r 1 2 + r 2 2 + 2 r 1 r 2 cos ω 0 2 d n c exp ( d n ) 2 2 ( c / Δ ω ) 2 r 1 2 exp x 2 2 ( c / Δ ω ) 2 r 2 2 exp ( x 2 d n ) 2 2 ( c / Δ ω ) 2 2 r 1 r 2 cos ω 0 2 d n c exp ( x d n ) 2 2 ( c / Δ ω ) 2 ,

Metrics