Abstract

In this paper, we experimentally show an effective method of coupling light between dielectric waveguides and metal-dielectric-metal plasmonic waveguides using an air-slot waveguide that extends into both types of waveguides. Our experimental results validate the theoretical calculation results of the proposed coupler. In addition, we investigated the sensitivity of our design to different fabrication challenges that may result in changing the width and length of the targeted optimum values in our design. Numerical simulation results show that the cut-off wavelength can be shifted by either changing the width of the dielectric or slot waveguide. The shift occurs because, as the waveguide’s width changes, the mode size changes and consequently the impedance mismatch between the dielectric and slot waveguide changes. We also found that changing the position of the air-slot waveguide with respect to the center of the dielectric waveguide resulted in a reduction in the coupling efficiency due to the reduction in the overlapped area between the mode supported by the slot waveguide and that of the dielectric waveguide.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers

Benedict Lau, Mohamed A. Swillam, and Amr S. Helmy
Opt. Express 18(26) 27048-27059 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Integrated Nanoplasmonic Splitter,” International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET, 2013), pp. 155–156.
  2. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
    [Crossref]
  3. B. Wang and G. P. Wang, “Plasmon Bragg Reflectors and Nanocavities on Flat Metallic Surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  4. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of Transmission Efficiency of Nanoplasmonic Wavelength Demultiplexer Based on Channel Drop Filters and Reflection Nanocavities,” Opt. Express 19(14), 12885–12890 (2011).
    [Crossref] [PubMed]
  5. K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “A Four-Port Plasmonic Quasi-Circulator Based on Metal-Insulator-Metal Waveguides,” Opt. Express 20(27), 28025–28032 (2012).
    [Crossref] [PubMed]
  6. Y. Gong, X. Liu, and L. Wang, “High-Channel-Count Plasmonic Filter with the Metal-Insulator-Metal Fibonacci-Sequence Gratings,” Opt. Lett. 35(3), 285–287 (2010).
    [Crossref] [PubMed]
  7. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical Investigation of an All-Optical Switch in a Graded Nonlinear Plasmonic Grating,” Nanotechnology 23(44), 444009 (2012).
    [Crossref] [PubMed]
  8. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  10. K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
    [Crossref]
  11. F. Hu, H. Yi, and Z. Zhou, “Wavelength Demultiplexing Structure Based on Arrayed Plasmonic Slot Cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
    [Crossref] [PubMed]
  12. Y.-J. Hsu and Y. Lai, “Vertical Plasmonic Resonance Coupler,” Opt. Express 23(1), 292–300 (2015).
    [Crossref] [PubMed]
  13. X. Han, “Dual-Channel Dispersionless Slow Light Based on Plasmon-Induced Transparency,” Appl. Opt. 53(1), 9–13 (2014).
    [Crossref] [PubMed]
  14. G. Veronis and S. Fan, “Theoretical Investigation of Compact Couplers Between Dielectric Slab Waveguides and Two-Dimensional Metal-Dielectric-Metal Plasmonic Waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [Crossref] [PubMed]
  15. C.-T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of Highly Efficient Hybrid Si-Au Taper for Dielectric Strip Waveguide to Plasmonic Slot Waveguide Mode Converter,” J. Lightwave Technol. 33(2), 535–540 (2015).
    [Crossref]
  16. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental Realization of Subwavelength Plasmonic Slot Waveguides on a Silicon Platform,” Opt. Lett. 35(4), 502–504 (2010).
    [Crossref] [PubMed]
  17. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express 17(21), 19033–19040 (2009).
    [Crossref] [PubMed]
  18. R. A. Wahsheh, Z. Lu, and M. Abushagur, “Experimental Investigation of a Nanoplasmonic Air-Slot Coupler Toward Dense Optical Integrated Circuits,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FW3E.2.
    [Crossref]
  19. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient Light Coupling Between Dielectric Slot Waveguide and Plasmonic Slot Waveguide,” Opt. Lett. 35(5), 649–651 (2010).
    [Crossref] [PubMed]
  20. D. Kong and M. Tsubokawa, “Evaluation of Slot-To-Slot Coupling Between Dielectric Slot Waveguides and Metal-Insulator-Metal Slot Waveguides,” Opt. Express 23(15), 19082–19091 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (1)

2012 (3)

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “A Four-Port Plasmonic Quasi-Circulator Based on Metal-Insulator-Metal Waveguides,” Opt. Express 20(27), 28025–28032 (2012).
[Crossref] [PubMed]

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical Investigation of an All-Optical Switch in a Graded Nonlinear Plasmonic Grating,” Nanotechnology 23(44), 444009 (2012).
[Crossref] [PubMed]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

2011 (2)

2010 (3)

2009 (2)

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express 17(21), 19033–19040 (2009).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[Crossref]

2007 (1)

2005 (1)

B. Wang and G. P. Wang, “Plasmon Bragg Reflectors and Nanocavities on Flat Metallic Surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

1969 (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Abushagur, M. A. G.

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient Light Coupling Between Dielectric Slot Waveguide and Plasmonic Slot Waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[Crossref]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express 17(21), 19033–19040 (2009).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Integrated Nanoplasmonic Splitter,” International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET, 2013), pp. 155–156.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Chen, C.-T.

Chen, R. T.

Economou, E. N.

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Elezzabi, A. Y.

Fan, S.

Gong, Y.

Guo, Y.

Guo, Y. H.

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Guo, Z.

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “A Four-Port Plasmonic Quasi-Circulator Based on Metal-Insulator-Metal Waveguides,” Opt. Express 20(27), 28025–28032 (2012).
[Crossref] [PubMed]

Han, X.

Han, Z.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Hosseini, A.

Hsu, Y.-J.

Hu, F.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kong, D.

Lai, Y.

Liu, X.

Lu, H.

Lu, Z.

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient Light Coupling Between Dielectric Slot Waveguide and Plasmonic Slot Waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[Crossref]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express 17(21), 19033–19040 (2009).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Integrated Nanoplasmonic Splitter,” International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET, 2013), pp. 155–156.

Luo, B.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “A Four-Port Plasmonic Quasi-Circulator Based on Metal-Insulator-Metal Waveguides,” Opt. Express 20(27), 28025–28032 (2012).
[Crossref] [PubMed]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Luo, X. G.

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Mao, D.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Pan, W.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “A Four-Port Plasmonic Quasi-Circulator Based on Metal-Insulator-Metal Waveguides,” Opt. Express 20(27), 28025–28032 (2012).
[Crossref] [PubMed]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Pan, Z.

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Subbaraman, H.

Tsubokawa, M.

Van, V.

Veronis, G.

Wahsheh, R. A.

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient Light Coupling Between Dielectric Slot Waveguide and Plasmonic Slot Waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[Crossref]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Couplers and Splitters,” Opt. Express 17(21), 19033–19040 (2009).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Integrated Nanoplasmonic Splitter,” International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET, 2013), pp. 155–156.

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg Reflectors and Nanocavities on Flat Metallic Surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, G.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical Investigation of an All-Optical Switch in a Graded Nonlinear Plasmonic Grating,” Nanotechnology 23(44), 444009 (2012).
[Crossref] [PubMed]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg Reflectors and Nanocavities on Flat Metallic Surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, L.

Wen, K.

Wen, K. H.

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Xu, X.

Yan, L.

Yan, L. S.

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

Yang, R.

Yi, H.

Zhang, X.

Zhou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Wang and G. P. Wang, “Plasmon Bragg Reflectors and Nanocavities on Flat Metallic Surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

IEEE Photonics J. (1)

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Spectral Characteristics of Plasmonic Metalinsulator-Metal Waveguides with a Tilted Groove,” IEEE Photonics J. 4(5), 1794–1800 (2012).
[Crossref]

J. Lightwave Technol. (1)

Nanotechnology (1)

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical Investigation of an All-Optical Switch in a Graded Nonlinear Plasmonic Grating,” Nanotechnology 23(44), 444009 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit In Metal Nanoparticle Plasmon Waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic Directional Couplers and Mach-Zehnder Interferometers,” Opt. Commun. 282(23), 4622–4626 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Other (2)

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Integrated Nanoplasmonic Splitter,” International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET, 2013), pp. 155–156.

R. A. Wahsheh, Z. Lu, and M. Abushagur, “Experimental Investigation of a Nanoplasmonic Air-Slot Coupler Toward Dense Optical Integrated Circuits,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FW3E.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the plasmonic air-slot coupler. (b) Scanning electron microscope image of the fabricated air-slot coupler.
Fig. 2
Fig. 2 Coupling efficiency as a function of the silicon air-slot waveguide’s length, Lc.
Fig. 3
Fig. 3 (a) Comparison of the experimental and simulation results of the plasmonic air-slot coupler. (b) Comparison of the simulation results of two plasmonic air-slot couplers of different widths.
Fig. 4
Fig. 4 Experimental results of two plasmonic air-slot couplers: one had a length of 500 nm and the other one had a length of 2000 nm.
Fig. 5
Fig. 5 (a) Schematic of the air-slot coupler. (b-e) Dependence of the spectrum response of the coupler on the length of the air-slot waveguide inside silicon Lc, the width of the silicon waveguide WSi, the width of the plasmonic slot waveguide WSlot, and the misalignment between the position of air-slot waveguide with respect to the center of the silicon waveguide S, respectively.

Metrics