Abstract

We report a synchronously-pumped femtosecond diamond Raman laser operating with a tunable second-Stokes output. Pumped using a mode-locked Ti:sapphire laser at 840-910 nm with a duration of 165 fs, the second-Stokes wavelength was tuneable from 1082 - 1200 nm with sub-picosecond duration. Our results demonstrate potential for cascaded Raman conversion to extend the wavelength coverage of standard laser sources to new regions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diamond Raman laser generating 65 fs pulses

Michelle Murtagh, Jipeng Lin, Richard P. Mildren, Gail McConnell, and David J. Spence
Opt. Express 23(12) 15504-15513 (2015)

Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm

Aravindan M. Warrier, Jipeng Lin, Helen M. Pask, Richard P. Mildren, David W. Coutts, and David J. Spence
Opt. Express 22(3) 3325-3333 (2014)

Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration

Michelle Murtagh, Jipeng Lin, Richard P. Mildren, and David J. Spence
Opt. Lett. 39(10) 2975-2978 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  2. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  3. J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
    [Crossref] [PubMed]
  4. W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2(1), 71–79 (2011).
    [Crossref] [PubMed]
  5. G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
    [Crossref] [PubMed]
  6. D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
    [Crossref]
  7. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010).
    [Crossref] [PubMed]
  8. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [Crossref] [PubMed]
  9. A. M. Warrier, J. Lin, H. M. Pask, R. P. Mildren, D. W. Coutts, and D. J. Spence, “Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm,” Opt. Express 22(3), 3325–3333 (2014).
    [Crossref] [PubMed]
  10. M. Murtagh, J. Lin, R. P. Mildren, G. McConnell, and D. J. Spence, “Efficient diamond Raman laser generating 65 fs pulses,” Opt. Express 23(12), 15504–15513 (2015).
    [Crossref] [PubMed]
  11. M. Murtagh, J. Lin, R. P. Mildren, and D. J. Spence, “Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration,” Opt. Lett. 39(10), 2975–2978 (2014).
    [Crossref] [PubMed]
  12. J. Lin and D. Spence, “25.5 fs dissipative-soliton diamond Raman laser,” Opt. Lett. (submitted).
  13. P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
    [Crossref]
  14. R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman Laser Design and Performance,” in Optical Engineering of Diamond (2013), pp. 239–276.
  15. D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu, “High-power synchronously pumped femtosecond Raman fiber laser,” Opt. Lett. 40(11), 2529–2532 (2015).
    [Crossref] [PubMed]
  16. T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
    [Crossref]
  17. K. Wang, T. M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012).
    [Crossref] [PubMed]

2015 (4)

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

M. Murtagh, J. Lin, R. P. Mildren, G. McConnell, and D. J. Spence, “Efficient diamond Raman laser generating 65 fs pulses,” Opt. Express 23(12), 15504–15513 (2015).
[Crossref] [PubMed]

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

D. Churin, J. Olson, R. A. Norwood, N. Peyghambarian, and K. Kieu, “High-power synchronously pumped femtosecond Raman fiber laser,” Opt. Lett. 40(11), 2529–2532 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

2012 (1)

2011 (2)

W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, “Two-photon excited hemoglobin fluorescence,” Biomed. Opt. Express 2(1), 71–79 (2011).
[Crossref] [PubMed]

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Agnesi, A.

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Amor, R.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Amos, W. B.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Basiev, T. T.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Chen, S.-J.

Cheng, L.-C.

Churin, D.

Coutts, D. W.

Dempster, J.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Doroshenko, M. E.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Ellis-Davies, G. C. R.

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

Esposito, E.

Farinello, P.

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Ferreiro, T. I.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

Granados, E.

Horton, N. G.

Ivleva, L. I.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Jelínek, M.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Jelínková, H.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Kieu, K.

Kubecek, V.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Lamour, T. P.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

Li, D.

Lin, C. P.

Lin, J.

Liu, T. M.

Luo, Y.

McConnell, G.

Mildren, R. P.

Murtagh, M.

Norwood, R. A.

Olson, J.

Pask, H. M.

Petrov, V.

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Peyghambarian, N.

Pirzio, F.

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Qu, J. Y.

Reid, D. T.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

Robb, G.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Smetanin, S. N.

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Spence, D.

J. Lin and D. Spence, “25.5 fs dissipative-soliton diamond Raman laser,” Opt. Lett. (submitted).

Spence, D. J.

Sun, J.

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

Trägårdh, J.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Wang, K.

Warrier, A. M.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wu, J.

Xu, C.

Zeng, Y.

Zhang, X.

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Zheng, W.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Phys. B (1)

P. Farinello, F. Pirzio, X. Zhang, V. Petrov, and A. Agnesi, “Efficient picosecond traveling-wave Raman conversion in a SrWO4 crystal pumped by multi-Watt MOPA lasers at 1064 nm,” Appl. Phys. B 120(4), 731–735 (2015).
[Crossref]

Biomed. Opt. Express (3)

J. Microsc. (1)

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

D. T. Reid, J. Sun, T. P. Lamour, and T. I. Ferreiro, “Advances in ultrafast optical parametric oscillators,” Laser Phys. Lett. 8(1), 8–15 (2011).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

G. C. R. Ellis-Davies, “Caged compounds: photorelease technology for control of cellular chemistry and physiology,” Nat. Methods 4(8), 619–628 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Quantum Electron. (1)

T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Four-wave-mixing generation of SRS components in BaWO 4 and SrWO 4 crystals under picosecond excitation,” Quantum Electron. 43(7), 616–620 (2013).
[Crossref]

Other (2)

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman Laser Design and Performance,” in Optical Engineering of Diamond (2013), pp. 239–276.

J. Lin and D. Spence, “25.5 fs dissipative-soliton diamond Raman laser,” Opt. Lett. (submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of experiment setup. λ/2: half-wave plate; PBS: polarizing beam splitting cube; L1, L2: mode matching lenses; L3: focusing lens; M1, M2: mirrors with ROC of 200 mm, M3, M4: plane mirrors.
Fig. 2
Fig. 2 The average Stokes output power vs. pump power (black squares), showing a maximum output of 400 mW and a 20% slope efficiency. The right-hand axis shows the residual pump power (red triangles) after passing through the diamond crystal and mirror M2.
Fig. 3
Fig. 3 Comparison of first- (bottom x-axis, dashed red) and second-Stokes (top x-axis, black) spectra at a pump wavelength of 840 nm. Both x-axes are linear in frequency space, and shifted so that each first-Stokes wavelength aligns with the corresponding second-Stokes wavelength for a diamond Raman shifted of 1332 cm−1. The 946 nm wavelength associated with a Raman shift of the pump center wavelength of 840 nm is marked.
Fig. 4
Fig. 4 Second-harmonic generation (SHG) autocorrelation measurement for the compressed second Stokes pulse, corresponding to a retrieved pulse duration of 845 fs.
Fig. 5
Fig. 5 Input pump power (red triangles) and second-Stokes output power (black squares) as a function of pump wavelength. The corresponding second-Stokes central wavelength is shown on the top axis.
Fig. 6
Fig. 6 Output wavelengths from a diamond Raman laser using various pump wavelengths.

Tables (1)

Tables Icon

Table 1 Summary of Mirror Coating Reflectivity.

Metrics