Abstract

We report on the novel optimization method to realize highly uniform microtrap arrays for single atom trapping with a spatial light modulator (SLM). This method consists of two iterative feedback loops with the measurements of both diffracted light intensities and in-trap fluorescence intensities from each microtrap. By applying this method to the single 87Rb atom trapping, we can reduce the variance of trap depths from 20.8% to 1.7% for 4 × 4 square arrays and less than 4% for various arrays with up to 62 sites. The detection error of individual single atoms is also reduced from 1.7% to 0.0054% on average.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional rearrangement of single atoms using actively controlled optical microtraps

Woojun Lee, Hyosub Kim, and Jaewook Ahn
Opt. Express 24(9) 9816-9825 (2016)

Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator

Silvia Bergamini, Benoît Darquié, Matthew Jones, Lionel Jacubowiez, Antoine Browaeys, and Philippe Grangier
J. Opt. Soc. Am. B 21(11) 1889-1894 (2004)

Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom

Xiaodong He, Shi Yu, Peng Xu, Jin Wang, and Mingsheng Zhan
Opt. Express 20(4) 3711-3724 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Meschede and A. Rauschenbeutel, “Manipulating single atoms,” Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).
    [Crossref]
  2. M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
    [Crossref]
  3. I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
    [Crossref]
  4. I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
    [Crossref]
  5. A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
    [Crossref] [PubMed]
  6. A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
    [Crossref] [PubMed]
  7. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
    [Crossref] [PubMed]
  8. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  9. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
    [Crossref] [PubMed]
  10. B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
    [Crossref] [PubMed]
  11. S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004).
    [Crossref]
  12. S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
    [Crossref]
  13. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
  14. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  15. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  16. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref] [PubMed]
  17. R. Di Leonardo, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [Crossref] [PubMed]
  18. G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
    [Crossref]
  19. C. L. Quesada, J. Andilla, and E. M. Badosa, “Correction of aberration in holographic optical tweezers using a ShackHartmann sensor,” Appl. Opt. 48, 1084–1090 (2009).
    [Crossref]
  20. N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
    [Crossref] [PubMed]
  21. Y. H. Fung and M. F. Andersen, “Efficient collisional blockade loading of a single atom into a tight microtrap,” New J. Phys. 17, 073011 (2015).
    [Crossref]
  22. K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
    [Crossref]
  23. M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
    [Crossref]
  24. C. Y. Shih and M. S. Chapma, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87, 063408 (2013).
    [Crossref]

2015 (5)

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Y. H. Fung and M. F. Andersen, “Efficient collisional blockade loading of a single atom into a tight microtrap,” New J. Phys. 17, 073011 (2015).
[Crossref]

2014 (2)

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

2013 (2)

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

C. Y. Shih and M. S. Chapma, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87, 063408 (2013).
[Crossref]

2012 (2)

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
[Crossref]

2010 (3)

M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
[Crossref] [PubMed]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
[Crossref]

2007 (2)

R. Di Leonardo, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref] [PubMed]

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
[Crossref]

2006 (1)

D. Meschede and A. Rauschenbeutel, “Manipulating single atoms,” Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).
[Crossref]

2004 (1)

2002 (2)

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Adams, C. S.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

Andersen, M. F.

Y. H. Fung and M. F. Andersen, “Efficient collisional blockade loading of a single atom into a tight microtrap,” New J. Phys. 17, 073011 (2015).
[Crossref]

Andilla, J.

Badosa, E. M.

Barredo, D.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Béguin, L.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Bergamini, S.

Bloch, I.

I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
[Crossref]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
[Crossref]

Browaeys, A.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004).
[Crossref]

Bruce, G. D.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Cassettari, D.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Chapma, M. S.

C. Y. Shih and M. S. Chapma, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87, 063408 (2013).
[Crossref]

Cormack, E.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dalibard, J.

I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
[Crossref]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
[Crossref]

Darquié, B.

DeMarco, B.

Di Leonardo, R.

Evellin, C.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Foss-Feig, M.

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Fung, Y. H.

Y. H. Fung and M. F. Andersen, “Efficient collisional blockade loading of a single atom into a tight microtrap,” New J. Phys. 17, 073011 (2015).
[Crossref]

Gaëtan, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Grangier, P.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B 21, 1889–1894 (2004).
[Crossref]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[Crossref] [PubMed]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Hazzard, K. R. A.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

He, X.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Isenhower, L.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jacubowiez, L.

Johnson, M. Y. H.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jones, M.

Kaufman, A. M.

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Labuhn, H.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Lahaye, T.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Lester, B. J.

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Li, G.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Li, X.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
[Crossref]

Lichtman, M.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Liu, M.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Luick, N.

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

Maller, K.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Mayoh, J.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Meschede, D.

D. Meschede and A. Rauschenbeutel, “Manipulating single atoms,” Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).
[Crossref]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Mølmer, K.

M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
[Crossref]

Nascimbène, S.

I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
[Crossref]

Nelson, K. D.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
[Crossref]

Nogrette, F.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Pasienski, M.

Piotrowicz, M. J.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Quesada, C. L.

Rauschenbeutel, A.

D. Meschede and A. Rauschenbeutel, “Manipulating single atoms,” Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).
[Crossref]

Ravets, S.

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Regal, C. A.

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Rey, A. M.

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Reymond, G.

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[Crossref] [PubMed]

Reynolds, C. M.

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Richards, D. A. W.

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Saffman, M.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schlosser, N.

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[Crossref] [PubMed]

Shih, C. Y.

C. Y. Shih and M. S. Chapma, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87, 063408 (2013).
[Crossref]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Vernier, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Walker, T.

M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
[Crossref]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Wall, M. L.

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Wang, J.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Weiss, D. S.

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
[Crossref]

Wilk, T.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Xu, P.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Yu, S.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Zhan, M.

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

Zhang, S.

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Zwerger, W.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
[Crossref]

Adv. At. Mol. Opt. Phys. (1)

D. Meschede and A. Rauschenbeutel, “Manipulating single atoms,” Adv. At. Mol. Opt. Phys. 53, 75–104 (2006).
[Crossref]

Appl. Opt. (1)

Chin. Sci. Bull. (1)

S. Yu, X. He, P. Xu, M. Liu, J. Wang, and M. Zhan, “Single atoms in the ring lattice for quantum information processing and quantum simulation,” Chin. Sci. Bull. 57, 1931–1945 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

G. D. Bruce, M. Y. H. Johnson, E. Cormack, D. A. W. Richards, J. Mayoh, and D. Cassettari, “Feedback-enhanced algorithm for aberration correction of holographic atom traps,” J. Phys. B: At. Mol. Opt. Phys. 48, 115303 (2015).
[Crossref]

Nat. Phys. (2)

K. D. Nelson, X. Li, and D. S. Weiss, “Imaging single atoms in a three-dimensional array,” Nat. Phys. 3, 556–560 (2007).
[Crossref]

I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012).
[Crossref]

Nature (1)

A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L. Wall, A. M. Rey, and C. A. Regal, “Entangling two transportable neutral atoms via local spin exchange,” Nature 527, 208–211 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

Y. H. Fung and M. F. Andersen, “Efficient collisional blockade loading of a single atom into a tight microtrap,” New J. Phys. 17, 073011 (2015).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (2)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. Rev. A (2)

M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, “Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array,” Phys. Rev. A 88, 013420 (2013).
[Crossref]

C. Y. Shih and M. S. Chapma, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87, 063408 (2013).
[Crossref]

Phys. Rev. Lett. (5)

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 023005 (2002).
[Crossref] [PubMed]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, “Coherent excitation transfer in a spin chain of three Rydberg atoms,” Phys. Rev. Lett. 114, 113002 (2015).
[Crossref] [PubMed]

B. J. Lester, N. Luick, A. M. Kaufman, C. M. Reynolds, and C. A. Regal, “Rapid production of uniformly filled arrays of neutral atoms,” Phys. Rev. Lett. 115, 073003 (2015).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Rev. Mod. Phys. (2)

M. Saffman, T. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).
[Crossref]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885 (2008).
[Crossref]

Science (1)

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal, “Two-particle quantum interference in tunnel-coupled optical tweezers,” Science 345, 306–309 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup and block diagram of the optimization process. The trap light at a wavelength of 850nm is reflected by the SLM that can modulate the phase of the light with the calculated pattern. The light transmitted through a dichroic mirror (DM) is measured with a CMOS camera. The trap light is strongly focused onto a MOT region by an aspherical lens operating under the ultrahigh vacuum glass cell. The lens is also used to collect the fluorescence at 780nm of single atoms. The fluorescence is separated from the trap light by the DM and detected with an EMCCD camera. We correct the target intensity of the Gerchberg-Saxton (GS) algorithm by taking the trap light intensities and the in-trap fluorescence intensities. We then use the corrected target intensity as the input for the GS algorithm, which generates a new hologram for the next iteration.
Fig. 2
Fig. 2 Averaged fluorescence images of single atoms trapped in (a) square, (b) ring, (c) triangle, (d) honeycomb, and (e) kagome arrays. The images of 60 × 60 μm2 (each pixel corresponds 0.85 × 0.85 μm2) are recorded by the EMCCD.
Fig. 3
Fig. 3 Trap intensity distributions of a 10 × 10 square array. The area of the images corresponds to 60 × 60 μm2 in the actual trapping plane. The images are taken by the CMOS camera (a) before and (b) after 20 iterations of the feedback optimization.
Fig. 4
Fig. 4 Performances of the feedback process for 10 × 10 square arrays. The red circles (black triangles) represent the intensity variance σint (diffraction efficiency η) as a function of feedback iteration i with nGS = 1 The error bars are statistical from a sample of five experiments with different initial random phases. The blue circles show σint obtained from a single experiment, where we run the GS algorithm until it converges (nGS ≃ 40) for each i-th iteration.
Fig. 5
Fig. 5 Single atom trapping in a 4 × 4 square array and effect of the feedback optimization of in-trap fluorescence intensities. An average of 1,000 fluorescence images (a) before and (b) after five iterations of the feedback algorithm. The images cover an area of 25 × 25 μm2 (each pixel corresponds 0.85 × 0.85 μm2) and are recorded by the EMCCD with 50ms exposure time. (c) Fluorescence detection histograms in each site of the array after optimization using only the trapping light intensity. The red (blue) bars represent the one-atom (zero-atom) signals. The black solid lines are Gaussian fits to the each distribution. (d) Same as in (c), but after the feedback optimization with in-trap fluorescence. The histogram of the integrated signals on site 12 (e) before and (f) after the optimization. The green bars indicate loss counts during the exposure.

Tables (2)

Tables Icon

Table 1 Summary of the results after 20 feedback iterations, including number of traps N, variance of the light intensities σint, and diffraction efficiency η. Each σint and η is average of five experiments started with different initial phases. Values in round brackets indicate the standard deviation.

Tables Icon

Table 2 Summary of the results after i iterations of the in-trap fluorescence feedback, including number of traps N, variance of in-trap fluorescence intensities σfluo, estimated variance of trap depths σtrap, and maximal detection error ε.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I t , n ( i + 1 ) = a n ( i ) I t , n
a n ( i ) = a n ( i 1 ) I n ( i ) I n ( i ) ,
σ int = 1 I n 1 N n = 1 N | I n I n | 2 ,
f n = ζ Γ 2 s 0 1 + s 0 + 4 ( δ + Δ n ) 2 / Γ 2 Δ τ ,

Metrics