Abstract

The femtosecond pulse-shaping capabilities of wavelength-selective directional couplers are investigated. Numerical results show that, depending on the coupling length and coupling coefficient, one can achieve very different temporal shapes at the output of the directional couplers. For instance, temporal re-shaping of Gaussian-like pulses into Hermite-Gaussian pulses, parabolic pulses, square temporal waveforms and sequences of equalized multiple pulses with time widths down to the femtosecond range can be achieved using readily feasible fiber/waveguide designs. The detrimental influence of the second-order variation of the detuning factor in these pulse shapers is also numerically investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-selective directional couplers as ultrafast optical differentiators

Tae-Jung Ahn and José Azaña
Opt. Express 19(8) 7625-7632 (2011)

Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers

Hamed Pishvai Bazargani and José Azaña
Opt. Express 23(18) 23450-23461 (2015)

Ultrashort pulse propagation in grating-assisted codirectional couplers

Mykola Kulishov and José Azaña
Opt. Express 12(12) 2699-2709 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
    [Crossref]
  2. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
    [Crossref] [PubMed]
  3. E. Frumker and Y. Silberberg, “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opt. Lett. 32(11), 1384–1386 (2007).
    [Crossref] [PubMed]
  4. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, and S. Juma, “Ultrashort pulse propagation in multiple-grating fiber structures,” Opt. Lett. 22(6), 402–404 (1997).
    [Crossref] [PubMed]
  5. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating,” J. Lightwave Technol. 24(1), 357–364 (2006).
    [Crossref]
  6. X. Chen and H. Li, “Simultaneous optical pulse multiplication and shaping based on the amplitude-assisted phase-only filter utilizing a fiber Bragg grating,” J. Lightwave Technol. 27(23), 5246–5252 (2009).
    [Crossref]
  7. V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15(17), 10878–10889 (2007).
    [Crossref] [PubMed]
  8. J. Azaña and L. R. Chen, “Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping,” J. Opt. Soc. Am. B 19(11), 2758–2769 (2002).
    [Crossref]
  9. M. Marano, S. Longhi, P. Laporta, M. Belmonte, and B. Agogliati, “All-optical square-pulse generation and multiplication at 1.5 mum by use of a novel class of fiber Bragg gratings,” Opt. Lett. 26(20), 1615–1617 (2001).
    [Crossref] [PubMed]
  10. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
    [Crossref]
  11. M. Kulishov and J. Azaña, “Ultrashort pulse propagation in uniform and nonuniform waveguide long-period gratings,” J. Opt. Soc. Am. A 22(7), 1319–1333 (2005).
    [Crossref] [PubMed]
  12. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, “Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings,” Opt. Express 14(26), 12670–12678 (2006).
    [Crossref] [PubMed]
  13. R. Slavik, J. Azaña, and Y. Park, “Long period fiber gratings for high speed optical pulse shaping: principles and applications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWN3.
    [Crossref]
  14. R. Slavik, Y. Park, and J. Azaña, “Tunable dispersion-tolerant picosecond flat-top waveform generation using an optical differentiator,” Opt. Express 15(11), 6717–6726 (2007).
    [Crossref] [PubMed]
  15. D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express 17(9), 7074–7087 (2009).
    [Crossref] [PubMed]
  16. N.-K. Chen, C.-L. Lin, and S. Chi, “Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer,” Opt. Express 15(26), 17747–17753 (2007).
    [Crossref] [PubMed]
  17. A. K. Das and M. A. Mondal, “Precise control of the center wavelength and bandwidth of wavelength-selective single-mode fiber couplers,” Opt. Lett. 19(11), 795–797 (1994).
    [Crossref] [PubMed]
  18. K. Morishita, “Wavelength-selective optical-fiber directional couplers using dispersive materials,” Opt. Lett. 13(2), 158–160 (1988).
    [Crossref] [PubMed]
  19. R. Zengerle and O. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol. 4(7), 823–827 (1986).
    [Crossref]
  20. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009).
    [Crossref] [PubMed]
  21. T.-J. Ahn and J. Azaña, “Wavelength-selective directional couplers as ultrafast optical differentiators,” Opt. Express 19(8), 7625–7632 (2011).
    [Crossref] [PubMed]
  22. M. Li, H. S. Jeong, J. Azaña, and T. J. Ahn, “25-terahertz-bandwidth all-optical temporal differentiator,” Opt. Express 20(27), 28273–28280 (2012).
    [Crossref] [PubMed]
  23. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

2012 (1)

2011 (1)

2009 (3)

2007 (4)

2006 (2)

2005 (2)

2002 (1)

2001 (2)

1997 (1)

1995 (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

1994 (1)

1988 (1)

1986 (1)

R. Zengerle and O. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol. 4(7), 823–827 (1986).
[Crossref]

Agogliati, B.

Ahn, T. J.

Ahn, T.-J.

Azaña, J.

Belmonte, M.

Benjamin, S. D.

Bozhevolnyi, S. I.

Chen, L. R.

Chen, N.-K.

Chen, X.

Chen, Z.

Chi, S.

Das, A. K.

Dereux, A.

Ellis, A. D.

Feurer, T.

Frumker, E.

García-Muñoz, V.

Holmgaard, T.

Hornung, T.

Ibsen, M.

Jeong, H. S.

Juma, S.

Krasavin, A. V.

Krcmarík, D.

Kulishov, M.

Laporta, P.

Leminger, O.

R. Zengerle and O. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol. 4(7), 823–827 (1986).
[Crossref]

Li, H.

Li, M.

Lin, C.-L.

Longhi, S.

Marano, M.

Markey, L.

Mondal, M. A.

Morishita, K.

Muriel, M. A.

Nelson, K. A.

Park, Y.

Parmigiani, F.

Petropoulos, P.

Preciado, M. A.

Richardson, D. J.

Silberberg, Y.

Sipe, J. E.

Slavik, R.

Slavík, R.

Smith, P. W. E.

Vaughan, J. C.

Weiner, A. M.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

Zayats, A. V.

Zengerle, R.

R. Zengerle and O. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol. 4(7), 823–827 (1986).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Opt. Lett. (7)

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19(3), 161–237 (1995).
[Crossref]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

R. Slavik, J. Azaña, and Y. Park, “Long period fiber gratings for high speed optical pulse shaping: principles and applications,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWN3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic showing the femtosecond pulse shaper based on a wavelength-selective directional coupler.
Fig. 2
Fig. 2 Hermite-Gaussian pulse generation at the output of waveguide (I) when κz = π/2 (i.e., first-order differentiator): (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 3
Fig. 3 Flat-top pulse generation based on a wavelength-shifted first-order differentiator at the output of waveguide (I): (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 4
Fig. 4 Parabolic pulse generation for κz = 2.23 based on a directional coupler in the waveguide (II), the green-dash line is an ideal parabolic pulse: (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 5
Fig. 5 Flat-top pulse generation for κz = 2.37 based on a directional coupler in the waveguide (II): (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 6
Fig. 6 Second-order differentiator for z = π based on a directional coupler in the waveguide (II): (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 7
Fig. 7 Input single pulse is divided into three pulses based on a directional coupler in the waveguide (II) when κz = 6.12, the input optical pulse is divided into three consecutive pulses: (a) spectral transfer function of the directional coupler, (b) spectrum of the output pulse and (c) output pulse temporal waveform.
Fig. 8
Fig. 8 Simulated results of a flat-top pulse shaper based on a directional coupler with a second-order variation detuning factor. (a) spectrum of the output pulse and (b) output pulse temporal waveform.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( z ) = A ( 0 ) × [ cos ( q z ) + j δ q sin ( q z ) ] exp ( j δ z )
B ( z ) = A ( 0 ) × [ j κ q sin ( q z ) ] exp ( j δ z ) .

Metrics