Abstract

Boron (B) is widely applied in microalloying of metals. As a typical light element, however, determination of boron in alloys with complex matrix spectra is still a challenge for laser-induced breakdown spectroscopy (LIBS) due to its weak line intensities in the UV-visible-NIR range and strong spectral interference from the matrix spectra. In this study, a wavelength-tunable laser was used to enhance the intensities of boron lines selectively. The intensities of B I 208.96 nm from boron plasmas were enhanced approximately 3 and 5.8 times while the wavelength-tunable laser was tuned to 249.68 and 249.77 nm, respectively. Utilizing the selective enhancement effect, accurate determinations of trace boron in nickel-based superalloys and steels were achieved by laser-induced breakdown spectroscopy assisted by laser-induced fluorescence (LIBS-LIF), with limits of detection (LoDs) of 0.9 and 0.5 ppm, respectively. The results demonstrated that LIBS-LIF can hopefully be used in boron determinations and has great potential for improving the ability of LIBS to determine light elements in alloys with a complex matrix.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu
Appl. Opt. 48(13) 2551-2558 (2009)

Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence

L.B. Guo, Z.H. Zhu, J.M. Li, Y. Tang, S.S Tang, Z.Q. Hao, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 26(3) 2634-2642 (2018)

Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence

Peiyuan Gao, Ping Yang, Ran Zhou, Shixiang Ma, Wen Zhang, Zhongqi Hao, Shisong Tang, Xiangyou Li, and Xiaoyan Zeng
Appl. Opt. 57(30) 8942-8946 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
    [Crossref]
  2. P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
    [Crossref]
  3. H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).
  4. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  5. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  6. J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).
  7. J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).
  8. R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
    [Crossref]
  9. M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectroc. Acta B 81, 1–10 (2013).
  10. M. A. Khater, “Trace detection of light elements by laser-induced breakdown spectroscopy (LIBS): applications to non-conducting materials,” Opt. Spectrosc. 115(4), 574–590 (2013).
    [Crossref]
  11. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
    [Crossref] [PubMed]
  12. H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).
  13. NIST, “Handbook of Basic Atomic Spectroscopic Data” (NIST), retrieved Oct. 2014, http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm .
  14. NIST, “NIST Atomic Spectra Database”, retrieved Oct. 2014, http://www.nist.gov/pml/data/asd.cfm .
  15. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).
  16. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47(11), 1810–1815 (2008).
    [Crossref] [PubMed]
  17. I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
    [Crossref]
  18. M. Nakane, A. Kuwako, K. Nishizawa, H. Kimura, C. Konagai, and T. Okamura, “Analysis of trace metal elements in water using laser-induced fluorescence for laser-breakdown plasma,” in Laser Plasma Generation and Diagnostics, (SPIE, 2000), pp. 122–131.
  19. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
    [Crossref]
  20. I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).
  21. Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).
  22. C. Goueguel, S. Laville, H. Loudyi, M. Chaker, M. Sabsabi, and F. Vidal, “Detection of lead in brass by Laser-Induced Breakdown Spectroscopy combined with Laser-Induced Fluorescence,” in Photonics North 2008, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, 2008), 709927.
  23. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  24. J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
    [Crossref]

2014 (1)

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

2013 (3)

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectroc. Acta B 81, 1–10 (2013).

M. A. Khater, “Trace detection of light elements by laser-induced breakdown spectroscopy (LIBS): applications to non-conducting materials,” Opt. Spectrosc. 115(4), 574–590 (2013).
[Crossref]

2012 (1)

2010 (1)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

2009 (3)

X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 48(13), 2551–2558 (2009).
[Crossref] [PubMed]

H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

2008 (2)

X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47(11), 1810–1815 (2008).
[Crossref] [PubMed]

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

2007 (1)

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

2005 (1)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

2001 (2)

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

1997 (3)

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
[Crossref]

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

1995 (1)

A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
[Crossref]

Azarkevich, A. A.

A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
[Crossref]

Baker, S. A.

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
[Crossref]

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Bousquet, B.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Canioni, L.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

Chaker, M.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Cook, R. L.

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

De Lucia, F. C.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

El Haddad, J.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Fedosejevs, R.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

French, P. D.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Gao, Y.

Godwal, Y.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

Gornushkin, I. B.

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
[Crossref]

Guan, H. R.

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

Hamada, N.

H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).

Harmon, R. S.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

He, W.

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Hu, Z. Q.

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Khater, M. A.

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectroc. Acta B 81, 1–10 (2013).

M. A. Khater, “Trace detection of light elements by laser-induced breakdown spectroscopy (LIBS): applications to non-conducting materials,” Opt. Spectrosc. 115(4), 574–590 (2013).
[Crossref]

Kim, J. E.

Kondo, H.

H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).

Kovalenko, L. V.

A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
[Crossref]

Krasnopolskii, V. M.

A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
[Crossref]

Laville, S.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Ling, H.

Liu, H.

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

Loudyi, H.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lu, Y. F.

Lui, S. L.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

Luo, W.

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

McNesby, K. L.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Miziolek, A. W.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Noll, R.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Rifai, K.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Sabsabi, M.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Shen, X. K.

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

Smith, B. W.

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
[Crossref]

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

Sun, X. F.

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Taschuk, M. T.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

Tsui, Y.

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

Vidal, F.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Wagatsuma, K.

H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).

Walters, R. A.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Wang, D.

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

Wang, H.

Wei, H.

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

Winefordner, J. D.

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51(7), 1055–1059 (1997).
[Crossref]

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Xie, Z. Q.

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

Yu, J. J.

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

Zhang, H. S.

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

Zhou, P. J.

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (3)

Geochem. Explor. Environ. Anal. (1)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. A. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS) - an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

J. Anal. At. Spectrom. (1)

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Mat. Rev. (1)

H. Liu, W. He, D. Wang, H. Wei, and W. Luo, “Grain boundary segregation and precipitation behavior of boron microalloyed nickel-based alloys,” Mat. Rev. 27, 334 (2013).

Mater. Sci. Eng. A (1)

P. J. Zhou, J. J. Yu, X. F. Sun, H. R. Guan, and Z. Q. Hu, “The role of boron on a conventional nickel-based superalloy,” Mater. Sci. Eng. A 491(1-2), 159–163 (2008).
[Crossref]

Metal Sci. Heat Treat. (1)

A. A. Azarkevich, L. V. Kovalenko, and V. M. Krasnopolskii, “The optimum content of boron in steel,” Metal Sci. Heat Treat. 37(1), 22–24 (1995).
[Crossref]

Opt. Spectrosc. (1)

M. A. Khater, “Trace detection of light elements by laser-induced breakdown spectroscopy (LIBS): applications to non-conducting materials,” Opt. Spectrosc. 115(4), 574–590 (2013).
[Crossref]

Process Contr. Qual. (1)

J. P. Singh, F. Y. Yueh, H. S. Zhang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation,” Process Contr. Qual. 10, 247–258 (1997).

Spectroc. Acta B (5)

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art,” Spectroc. Acta B 81, 1–10 (2013).

H. Kondo, N. Hamada, and K. Wagatsuma, “Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry,” Spectroc. Acta B 64, 884–890 (2009).

I. B. Gornushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectroc. Acta B 52, 1653–1662 (1997).

Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Tsui, and R. Fedosejevs, “Determination of lead in water using laser ablation-laser induced fluorescence,” Spectroc. Acta B 62, 1443–1447 (2007).

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectroc. Acta B 56, 933–945 (2001).

Spectroc. Acta. B (1)

J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectroc. Acta. B 56, 851–864 (2001).

Spectrochim. Acta B At. Spectrosc. (1)

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Other (5)

C. Goueguel, S. Laville, H. Loudyi, M. Chaker, M. Sabsabi, and F. Vidal, “Detection of lead in brass by Laser-Induced Breakdown Spectroscopy combined with Laser-Induced Fluorescence,” in Photonics North 2008, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, 2008), 709927.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).

NIST, “Handbook of Basic Atomic Spectroscopic Data” (NIST), retrieved Oct. 2014, http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm .

NIST, “NIST Atomic Spectra Database”, retrieved Oct. 2014, http://www.nist.gov/pml/data/asd.cfm .

M. Nakane, A. Kuwako, K. Nishizawa, H. Kimura, C. Konagai, and T. Okamura, “Analysis of trace metal elements in water using laser-induced fluorescence for laser-breakdown plasma,” in Laser Plasma Generation and Diagnostics, (SPIE, 2000), pp. 122–131.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup for LIBS-LIF.
Fig. 2
Fig. 2 The main transitions of boron in the UV-visible-NIR ranges from NIST [13].
Fig. 3
Fig. 3 Spectra of boron plasmas with the excitations of the 249.68/249.77 nm OPO laser and with LIBS only.
Fig. 4
Fig. 4 Influences of the laser (532 nm) energies and the inter-pulse delays on the SBRs of B I 208.96 nm (a) and the OPO laser (249.77 nm) energies on the intensities and SBRs of B I 208.96 nm (b).
Fig. 5
Fig. 5 The calibration curve (a) and spectra (b) of boron in nickel-based supperalloys by LIBS-LIF.
Fig. 6
Fig. 6 The calibration curve (a) and spectra (b) of boron in steels measured by LIBS-LIF.

Tables (1)

Tables Icon

Table 1 Reported works about LIBS-LIF.

Metrics