Abstract

The presence of a solution-processed hybrid PEDOT:PSS-MoO3-based hole injection layer (HIL) promotes a good interfacial contact between the indium tin oxide anode and hole-transporting layer for efficient operation of organic light-emitting diodes (OLEDs). This work reveals that the use of the hybrid HIL benefits the performance of phosphorescent OLEDs in two ways: (1) to assist in efficient hole injection, thereby improving power efficiency of OLEDs, and (2) to improve electron-hole current balance and suppression of interfacial defects at the organic/anode interface. The combined effects result in the power efficiency of 89.2 lm/W and external quantum efficiency of 23.9% for phosphorescent green OLEDs. The solution-processed hybrid PEDOT:PSS-MoO3-based HIL is beneficial for application in solution-processed organic electronic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triple-stacked hole-selective layers for efficient solution-processable organic semiconducting devices

Yoon Ho Huh, O. Eun Kwon, and Byoungchoo Park
Opt. Express 23(11) A625-A639 (2015)

Improved impedance characteristics of all-water-processable triple-stacked hole-selective layers in solution-processed OLEDs

Yoon Ho Huh, O. Eun Kwon, Byoungchoo Park, Seulki Ji, Sun Sook Lee, Jongsun Lim, and Ki-Seok An
Opt. Express 24(10) A846-A855 (2016)

High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
    [Crossref] [PubMed]
  2. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).
  3. W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
    [Crossref]
  4. J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
    [Crossref]
  5. H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
    [Crossref]
  6. Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
    [Crossref]
  7. S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
    [Crossref]
  8. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
    [Crossref]
  9. M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
    [Crossref]
  10. J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
    [Crossref]
  11. M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
    [Crossref]
  12. J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
    [Crossref]
  13. Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
    [Crossref]
  14. H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
    [Crossref]
  15. C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
    [Crossref] [PubMed]
  16. T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
    [Crossref]
  17. Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
    [Crossref]
  18. M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
    [Crossref]
  19. J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
    [Crossref] [PubMed]
  20. T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
    [Crossref]
  21. S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
    [Crossref]
  22. Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
    [Crossref] [PubMed]
  23. H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
    [Crossref]
  24. Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
    [Crossref]
  25. M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
    [Crossref] [PubMed]
  26. S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
    [Crossref] [PubMed]
  27. W. H. Choi, H. L. Tam, D. Ma, and F. Zhu, “Emission behavior of dual-side emissive transparent white organic light-emitting diodes,” Opt. Express 23(11), A471–A479 (2015).
    [Crossref] [PubMed]
  28. Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
    [Crossref]
  29. G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
    [Crossref]
  30. Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
    [Crossref]
  31. A. W. Castleman and K. H. Bowen, “Clusters: Structure, energetics, and dynamics of intermediate states of matter,” J. Phys. Chem. 100(31), 12911–12944 (1996).
    [Crossref]
  32. X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
    [Crossref]
  33. M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
    [Crossref]
  34. S. Deb and J. Chopoorian, “Optical properties and color‐center formation in thin films of molybdenum trioxide,” J. Appl. Phys. 37(13), 4818–4825 (1966).
    [Crossref]
  35. T. S. Sian and G. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films,” Sol. Energy Mater. Sol. Cells 82(3), 375–386 (2004).
    [Crossref]

2016 (2)

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

2015 (4)

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

W. H. Choi, H. L. Tam, D. Ma, and F. Zhu, “Emission behavior of dual-side emissive transparent white organic light-emitting diodes,” Opt. Express 23(11), A471–A479 (2015).
[Crossref] [PubMed]

2014 (4)

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

2013 (3)

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

2012 (4)

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
[Crossref]

2011 (5)

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

2010 (2)

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

2009 (2)

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

2008 (3)

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
[Crossref]

2007 (2)

M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
[Crossref]

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

2006 (1)

S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
[Crossref]

2004 (1)

T. S. Sian and G. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films,” Sol. Energy Mater. Sol. Cells 82(3), 375–386 (2004).
[Crossref]

1996 (1)

A. W. Castleman and K. H. Bowen, “Clusters: Structure, energetics, and dynamics of intermediate states of matter,” J. Phys. Chem. 100(31), 12911–12944 (1996).
[Crossref]

1966 (1)

S. Deb and J. Chopoorian, “Optical properties and color‐center formation in thin films of molybdenum trioxide,” J. Appl. Phys. 37(13), 4818–4825 (1966).
[Crossref]

Ameri, T.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Bernhard, C.

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

bin Mohd Yusoff, A. R.

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

Bowen, K. H.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

A. W. Castleman and K. H. Bowen, “Clusters: Structure, energetics, and dynamics of intermediate states of matter,” J. Phys. Chem. 100(31), 12911–12944 (1996).
[Crossref]

Brabec, C. J.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Bruns, M.

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Bumueller, D.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Cao, Y.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Castleman, A. W.

A. W. Castleman and K. H. Bowen, “Clusters: Structure, energetics, and dynamics of intermediate states of matter,” J. Phys. Chem. 100(31), 12911–12944 (1996).
[Crossref]

Chai, L.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Chen, L.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Cheng, S. Z. D.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Cheyns, D.

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Choi, W. H.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

W. H. Choi, H. L. Tam, D. Ma, and F. Zhu, “Emission behavior of dual-side emissive transparent white organic light-emitting diodes,” Opt. Express 23(11), A471–A479 (2015).
[Crossref] [PubMed]

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

Chopoorian, J.

S. Deb and J. Chopoorian, “Optical properties and color‐center formation in thin films of molybdenum trioxide,” J. Appl. Phys. 37(13), 4818–4825 (1966).
[Crossref]

Chopra, N.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Colsmann, A.

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Cui, C.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Cui, L. S.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Cui, Z.

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Czolk, J.

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

Deb, S.

S. Deb and J. Chopoorian, “Optical properties and color‐center formation in thin films of molybdenum trioxide,” J. Appl. Phys. 37(13), 4818–4825 (1966).
[Crossref]

Ding, Y.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Eom, S. H.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Fairbrother, D. H.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Ganduglia-Pirovano, M. V.

M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
[Crossref]

Gantefoer, G.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Gao, C. H.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Gao, Z. X.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Girotto, C.

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Gnam, F.

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

Gong, X.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Gonmori, E.

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

Görrn, P.

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

Greiner, M. T.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Halik, M.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Hamwi, S.

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Heiz, U.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Helander, M. G.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Heremans, P.

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Höfle, S.

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Hofmann, A.

M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
[Crossref]

Huang, F.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Huang, L.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Ishikawa, R.

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

Jang, J.

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

Jia, H. S.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Jin, Z. M.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Kahn, A.

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Khalandovsky, R.

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

Khatri, I.

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

Kido, J.

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

Kietzke, E. L.

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Kietzke, T.

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Kim, H. P.

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

Kim, Y. N.

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

Klubek, K. P.

H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
[Crossref]

Kowalsky, W.

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Krantz, J.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Krjöger, M.

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Kwak, J. H.

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

Kwon, Y.

H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
[Crossref]

Kwon, Y. W.

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

Lee, C.

H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
[Crossref]

Lee, C. H.

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

Lee, H.

H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
[Crossref]

Lee, H. K.

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

Lee, J.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Lee, S. J.

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

Lemmer, U.

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Leo, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Li, L.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Li, S.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Li, Y.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Li, Y. H.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Li, Y. Q.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Liao, L. S.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Liew, P. K.

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Lim, A.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Lin, J.

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

Liu, Z. W.

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Lu, H.

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Lu, Z. H.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Luo, L.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Luo, Q.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Lüssem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Ma, C. Q.

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Ma, D.

Ma, D. G.

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

Machui, F.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Mertens, A.

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

Meyer, J.

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Miao, Y. Q.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Ng, G. M.

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Nie, S. H.

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Peng, J.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Puzzo, D. P.

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Qian, D.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Qiu, J.

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Rand, B. P.

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Reddy, G.

T. S. Sian and G. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films,” Sol. Energy Mater. Sol. Cells 82(3), 375–386 (2004).
[Crossref]

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Riedl, T.

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Salinas, M.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Sasabe, H.

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

Sauer, J.

M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
[Crossref]

Schienle, A.

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Schneider, J.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Shi, H. P.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Shi, J.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Shi, X. B.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Shirai, H.

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

Sian, T. S.

T. S. Sian and G. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films,” Sol. Energy Mater. Sol. Cells 82(3), 375–386 (2004).
[Crossref]

So, F.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

So, S. K.

S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
[Crossref]

Stubhan, T.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

Su, S. J.

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

Tam, H. L.

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

W. H. Choi, H. L. Tam, D. Ma, and F. Zhu, “Emission behavior of dual-side emissive transparent white organic light-emitting diodes,” Opt. Express 23(11), A471–A479 (2015).
[Crossref] [PubMed]

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

Tan, L. W.

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Tan, Z.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Tang, C. W.

H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
[Crossref]

Tang, W. M.

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Tang, X.

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Tao, R.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Tsang, S. W.

S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
[Crossref]

Tse, S. C.

S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
[Crossref]

Ueno, K.

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

Voroshazi, E.

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Wang, H.

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
[Crossref]

Wang, M.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Wang, Q.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Wang, Z. B.

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

Wang, Z. K.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Wu, B.

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

Wu, N.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Wu, Z. H.

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

Xu, M. F.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Xu, Q.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

Xue, J. G.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Yang, T.

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Zhang, M.

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

Zheng, Y.

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

Zhu, F.

Zhu, F. R.

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Zhu, H.

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Zhu, X. Z.

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Zilberberg, K.

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (2)

C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces 3(9), 3244–3247 (2011).
[Crossref] [PubMed]

Y. Wang, Q. Luo, N. Wu, Q. Wang, H. Zhu, L. Chen, Y. Q. Li, L. Luo, and C. Q. Ma, “Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells,” ACS Appl. Mater. Interfaces 7(13), 7170–7179 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S. Z. D. Cheng, and Y. Cao, “Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer,” Adv. Energy Mater. 2(5), 523–527 (2012).
[Crossref]

Adv. Funct. Mater. (1)

M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Adv. Mater. (3)

S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off,” Adv. Mater. 20(21), 4189–4194 (2008).

J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, “MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics,” Adv. Mater. 23(1), 70–73 (2011).
[Crossref] [PubMed]

S. Höfle, A. Schienle, C. Bernhard, M. Bruns, U. Lemmer, and A. Colsmann, “Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture,” Adv. Mater. 26(30), 5155–5159 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (10)

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension,” Appl. Phys. Lett. 98(25), 253308 (2011).
[Crossref]

H. Lu, J. Lin, N. Wu, S. H. Nie, Q. Luo, C. Q. Ma, and Z. Cui, “Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices,” Appl. Phys. Lett. 106(9), 093302 (2015).
[Crossref]

Q. Liu, I. Khatri, R. Ishikawa, K. Ueno, and H. Shirai, “Effects of molybdenum oxide molecular doping on the chemical structure of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) heterojunction solar cells,” Appl. Phys. Lett. 102(18), 183503 (2013).
[Crossref]

G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cell,” Appl. Phys. Lett. 90(10), 103505 (2007).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. W. Liu, and Z. H. Lu, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98(7), 073310 (2011).
[Crossref]

W. H. Choi, H. L. Tam, F. R. Zhu, D. G. Ma, H. Sasabe, and J. Kido, “High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination,” Appl. Phys. Lett. 102(15), 153308 (2013).
[Crossref]

J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93(12), 123306 (2008).
[Crossref]

H. Wang, K. P. Klubek, and C. W. Tang, “Current efficiency in organic light-emitting diodes with a hole-injection layer,” Appl. Phys. Lett. 93(9), 093306 (2008).
[Crossref]

M. Krjöger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

J. Meyer, M. Krjöger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, and A. Kahn, “Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism,” Appl. Phys. Lett. 96(19), 193302 (2010).
[Crossref]

J. Appl. Phys. (4)

J. Meyer, K. Zilberberg, T. Riedl, and A. Kahn, “Electronic structure of vanadium pentoxide: An efficient hole injector for organic electronic materials,” J. Appl. Phys. 110(3), 033710 (2011).
[Crossref]

S. C. Tse, S. W. Tsang, and S. K. So, “PEDOT:PSS polymeric conducting anode for small organic transporting molecules in dark injection experiments,” J. Appl. Phys. 100(6), 063708 (2006).
[Crossref]

S. Deb and J. Chopoorian, “Optical properties and color‐center formation in thin films of molybdenum trioxide,” J. Appl. Phys. 37(13), 4818–4825 (1966).
[Crossref]

Z. B. Wang, M. G. Helander, J. Qiu, Z. W. Liu, M. T. Greiner, and Z. H. Lu, “Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes,” J. Appl. Phys. 108(2), 024510 (2010).
[Crossref]

J. Phys. Chem. (1)

A. W. Castleman and K. H. Bowen, “Clusters: Structure, energetics, and dynamics of intermediate states of matter,” J. Phys. Chem. 100(31), 12911–12944 (1996).
[Crossref]

J. Phys. Chem. C (2)

X. Tang, D. Bumueller, A. Lim, J. Schneider, U. Heiz, G. Gantefoer, D. H. Fairbrother, and K. H. Bowen, “Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters,” J. Phys. Chem. C 118(50), 29278–29286 (2014).
[Crossref]

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells,” J. Phys. Chem. C 116(35), 18626–18632 (2012).
[Crossref]

J. Soc. Inf. Disp. (1)

H. Lee, Y. Kwon, and C. Lee, “Improved performances in organic and polymer light-emitting diodes using solution-processed vanadium pentoxide as a hole injection layer,” J. Soc. Inf. Disp. 20(12), 640–645 (2012).
[Crossref]

Nanoscale (1)

M. Zhang, S. Höfle, J. Czolk, A. Mertens, and A. Colsmann, “All-solution processed transparent organic light emitting diodes,” Nanoscale 7(47), 20009–20014 (2015).
[Crossref] [PubMed]

Nature (1)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459(7244), 234–238 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (3)

Z. H. Wu, B. Wu, H. L. Tam, and F. R. Zhu, “An insight on oxide interlayer in organic solar cells: from light absorption and charge collection perspectives,” Org. Electron. 31, 266–272 (2016).
[Crossref]

Y. W. Kwon, Y. N. Kim, H. K. Lee, C. H. Lee, and J. H. Kwak, “Composite film of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoO3 as an efficient hole injection layer for polymer light-emitting diodes,” Org. Electron. 15(6), 1083–1087 (2014).
[Crossref]

M. F. Xu, L. S. Cui, X. Z. Zhu, C. H. Gao, X. B. Shi, Z. M. Jin, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells,” Org. Electron. 14(2), 657–664 (2013).
[Crossref]

Sci. Adv. Mater. (1)

Y. Q. Miao, Z. X. Gao, R. Tao, H. P. Shi, H. Wang, Y. H. Li, H. S. Jia, W. H. Choi, and F. R. Zhu, “Realization of ultra-high color stable hybrid white organic light-emitting diodes via sequential symmetrical doping in emissive layer,” Sci. Adv. Mater. 8(2), 401–407 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, “Organic photovoltaic with PEDOT:PSS and V2O5 mixture as hole transport layer,” Sol. Energy Mater. Sol. Cells 120, 238–243 (2014).
[Crossref]

T. S. Sian and G. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films,” Sol. Energy Mater. Sol. Cells 82(3), 375–386 (2004).
[Crossref]

Surf. Sci. Rep. (1)

M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, “Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges,” Surf. Sci. Rep. 62(6), 219–270 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The cross-sectional view of the phosphorescent OLED, and (b) the schematic diagram of energy levels of the functional materials used in the OLEDs.
Fig. 2
Fig. 2 (a) J–V and (b) L–V characteristics of a set of OLEDs fabricated using different HILs of pristine PEDOT:PSS (red dots), eMoO3 (green triangles), sMoO3 (inverted blue triangles) and hybrid PEDOT:PSS-MoO3 (sky blue diamonds).
Fig. 3
Fig. 3 Comparison of power efficiency as a function of the luminance obtained for a set of structurally identical OLEDs made with different HILs of pristine PEDOT:PSS (red dots), eMoO3 (green triangles), sMoO3 (inverted blue triangles) and hybrid PEDOT:PSS-MoO3 (sky blue diamonds).
Fig. 4
Fig. 4 (a) EQE as a function of the luminance for a set of structurally identical OLEDs having different HILs of pristine PEDOT:PSS (red dots), eMoO3 (green triangles), sMoO3 (inverted blue triangles) and hybrid PEDOT:PSS-MoO3 (sky blue diamonds), and (b) the normalized EL spectra of different OLEDs measured at 5.0 V.
Fig. 5
Fig. 5 (a) J–V characteristics as a function of luminance and (b) EQE as a function of luminance, measured for a set of structurally identical OLEDs with different hybrid PEDOT:PSS-MoO3 HILs, having different volume ratios of PEDOT:PSS to MoO3 in the mixed solutions, e.g. 1:1, 2:1, 3:1 and 4:1.
Fig. 6
Fig. 6 AFM images measured for the surfaces of (a) a bare ITO, (b) an eMoO3-modified ITO, and (c) a sMoO3-modified ITO. An area of 5.0 µm × 5.0 µm was characterized in the AFM measurements using tapping mode.
Fig. 7
Fig. 7 AFM images measured for (a) PEDOT:PSS HIL and, hybrid PEDOT:PSS-MoO3 HILs prepared using mixed solution with different volume ratios of PEDOT:PSS to MoO3 NPs, (b) 1:1, (c) 2:1, (d) 3:1, and (e) 4:1.
Fig. 8
Fig. 8 (a) The secondary-electron cut-off and (b) the valance band edge of the UPS spectra, and (c) Mo 3d XPS spectrum, measured for the sMoO3-coated ITO samples. The deconvoluted XPS double peaks, illustrating Mo 3d5/2 and 3d3/2 due to Mo6+, are also presented
Fig. 9
Fig. 9 (a) The secondary-electron cut-off, and (b) the valance band edge of the USP spectra measured for the hybrid HIL, XPS spectra measured for (c) pristine PEDOT:PSS thin film, indicating the component of S 2s peak and (d) PEDOT:PSS-MoO3 layer, illustrating the presence of Mo6+ and Mo5+states in the hybrid HIL.

Metrics