Abstract

The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple scattering and random walk based spectra modulation in Ho3+/Tm3+ codoped (Pb,La)(Ti,Zr)O3 ceramics under plasma atmosphere

Caixia Xu, Jingwen Zhang, Long Xu, and Hua Zhao
Opt. Mater. Express 7(6) 1745-1753 (2017)

Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics

Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, Yingyin K. Zou, and Jingwen Zhang
Appl. Opt. 53(4) 764-768 (2014)

Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics

Long Xu, Jingwen Zhang, Hua Zhao, Haibin Sun, and Caixia Xu
Opt. Lett. 42(17) 3303-3306 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York), 371–492 (1987).
  2. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
    [Crossref]
  3. V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
    [Crossref]
  4. J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
    [Crossref]
  5. A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
    [Crossref]
  6. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32(9), 1090–1092 (2007).
    [Crossref] [PubMed]
  7. H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
    [Crossref] [PubMed]
  8. A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
    [Crossref]
  9. C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
    [Crossref]
  10. Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
    [Crossref]
  11. J. Zhang, H. Sun, Y. Zou, X. Chen, B. Di Bartolo, and H. Zhao, “Multifunctional optical device with electrooptic Er3+ and Yb3+ doped lanthanum-modified lead zirconate titanate ceramic gain media,” J. Lightwave Technol. 31(9), 1495–1502 (2013).
    [Crossref]
  12. W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
    [Crossref] [PubMed]
  13. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
    [Crossref] [PubMed]
  14. L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
    [Crossref] [PubMed]
  15. R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
    [Crossref] [PubMed]
  16. M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
    [Crossref] [PubMed]
  17. M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
    [Crossref] [PubMed]
  18. P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
    [Crossref] [PubMed]
  19. L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
    [Crossref]
  20. Y. Qian, R. Wang, B. Zhang, and B. Wang, “Upconversion emissions induced by 1550 nm in near-stoichiometric Er:LiNbO3 crystal,” Opt. Lett. 38(19), 3731–3734 (2013).
    [Crossref] [PubMed]
  21. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  22. M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
    [Crossref]
  23. H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
    [Crossref]
  24. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
    [Crossref] [PubMed]
  25. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
    [Crossref] [PubMed]
  26. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
    [Crossref]
  27. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  28. H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
    [Crossref]
  29. S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
    [Crossref]
  30. W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
    [Crossref]
  31. V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
    [Crossref]

2015 (2)

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

2014 (2)

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

2013 (3)

2012 (1)

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

2010 (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

2009 (2)

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

2008 (1)

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

2005 (4)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

2004 (2)

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2001 (1)

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

1996 (2)

L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
[Crossref] [PubMed]

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

1995 (1)

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

1992 (1)

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

1985 (2)

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[Crossref] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[Crossref] [PubMed]

Alouini, M.

Andreeta, É. R. M.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Arkhipov, V. I.

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barthelemy, P.

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
[Crossref] [PubMed]

Bassler, H.

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

Bertolotti, J.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
[Crossref] [PubMed]

Bogani, F.

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

Botero, E. R.

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Botero, É. R.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

Bourderionnet, J.

Burresi, M.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

Cavigli, L.

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

Chen, Q.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Chen, X.

J. Zhang, H. Sun, Y. Zou, X. Chen, B. Di Bartolo, and H. Zhao, “Multifunctional optical device with electrooptic Er3+ and Yb3+ doped lanthanum-modified lead zirconate titanate ceramic gain media,” J. Lightwave Technol. 31(9), 1495–1502 (2013).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

Cheung, C.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

de Camargo, A. S. S.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Di Bartolo, B.

J. Zhang, H. Sun, Y. Zou, X. Chen, B. Di Bartolo, and H. Zhao, “Multifunctional optical device with electrooptic Er3+ and Yb3+ doped lanthanum-modified lead zirconate titanate ceramic gain media,” J. Lightwave Technol. 31(9), 1495–1502 (2013).
[Crossref]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dimos, D.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

Dolfi, D.

Duan, X.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Eiras, J. A.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Emelianova, E. V.

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Friebele, E. J.

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

Fu, Y.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Garcia, D.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Gibbs, H.

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

Granzow, T.

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

Gupta, S. M.

V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
[Crossref]

Gurioli, M.

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

Hernández-Rodríguez, M. A.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Huang, P.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

Huang, P. L.

Huignard, J. P.

Imanieh, M. H.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Jiang, H.

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Jiang, T.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Kadashchuk, A.

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

Khitrova, G.

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

Kuzmin, L. V.

L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
[Crossref] [PubMed]

Lagendijk, A.

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[Crossref] [PubMed]

Le Gouët, J.

Li, K. K.

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Li, L.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

Luo, X.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Ma, Y.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Maret, G.

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[Crossref] [PubMed]

Martin, I. R.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Martin, L. L.

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Ming, H.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Morvan, L.

Mujumdar, S.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

Nunes, L. A. O.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

Pandit, P.

V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
[Crossref]

Payne, D. A.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

Peng, Y.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Pike, G. E.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

Possatto, J. F.

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

Qian, Y.

Radhalakshmi, V.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

Robertson, J.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

Romanov, V. P.

L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
[Crossref] [PubMed]

Sapienza, R.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

Savo, R.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

Schaab, S.

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

Schaniel, D.

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

Seager, C. H.

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

Sun, H.

Sun, X.

Tuttle, B. A.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[Crossref] [PubMed]

van Tiggelen, B.

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

Vynck, K.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

Wadhawan, V. K.

V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
[Crossref]

Wang, B.

Wang, H.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Wang, R.

Wang, Y.

Warren, W. L.

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

Wiersma, D.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

Wiersma, D. S.

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
[Crossref] [PubMed]

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

Woike, Th.

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

Wolf, P. E.

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

Xing, M.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Xu, C.

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

Xu, L.

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

Yodh, A. G.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

Zhang, B.

Zhang, J.

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

J. Zhang, H. Sun, Y. Zou, X. Chen, B. Di Bartolo, and H. Zhao, “Multifunctional optical device with electrooptic Er3+ and Yb3+ doped lanthanum-modified lead zirconate titanate ceramic gain media,” J. Lightwave Technol. 31(9), 1495–1502 (2013).
[Crossref]

Zhang, J. W.

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

Zhang, R.

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Zhang, S.

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

Zhao, H.

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

J. Zhang, H. Sun, Y. Zou, X. Chen, B. Di Bartolo, and H. Zhao, “Multifunctional optical device with electrooptic Er3+ and Yb3+ doped lanthanum-modified lead zirconate titanate ceramic gain media,” J. Lightwave Technol. 31(9), 1495–1502 (2013).
[Crossref]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Zheng, Z.

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Zhou, X.

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

Zou, Y.

Zou, Y. K.

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Zubkov, L. A.

L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

J. W. Zhang, Y. K. Zou, Q. Chen, R. Zhang, K. K. Li, H. Jiang, P. Huang, and X. Chen, “Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titante ceramics,” Appl. Phys. Lett. 89(6), 061113 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, É. R. M. Andreeta, D. Garcia, J. A. Eiras, and L. A. O. Nunes, “2.8 and 1.55 mum emission from diode-pumped Er3+-doped and Yb3+ co-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic,” Appl. Phys. Lett. 86(24), 241112 (2005).
[Crossref]

W. L. Warren, C. H. Seager, D. Dimos, and E. J. Friebele, “Optically induced absorption and paramagnetism in lead lanthanum zirconate titanate ceramics,” Appl. Phys. Lett. 61(21), 2530–2532 (1992).
[Crossref]

Chem. Phys. (1)

V. I. Arkhipov, E. V. Emelianova, A. Kadashchuk, and H. Bassler, “Hopping model of thermally stimulated photoluminescence in disordered organic materials,” Chem. Phys. 266(1), 97–108 (2001).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

J. Alloys Compd. (1)

H. Wang, M. Xing, X. Luo, X. Zhou, Y. Fu, T. Jiang, Y. Peng, Y. Ma, and X. Duan, “Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 μm and 980 nm excitation,” J. Alloys Compd. 587, 344–348 (2014).
[Crossref]

J. Appl. Phys. (4)

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

S. Schaab, T. Granzow, Th. Woike, and D. Schaniel, “Light-induced absorption in lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 105(2), 024103 (2009).
[Crossref]

C. Xu, J. Zhang, L. Xu, and H. Zhao, “Mechanism of photochromic effect in Pb (Zr, Ti) O3 and (Pb, La)(Zr, Ti) O3 ceramics under violet/infrared light illumination,” J. Appl. Phys. 117(2), 023107 (2015).
[Crossref]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

J. Lightwave Technol. (1)

Mater. Sci. Eng. B (1)

V. K. Wadhawan, P. Pandit, and S. M. Gupta, “PMN-PT based relaxor ferroelectrics as very smart materials,” Mater. Sci. Eng. B 120(1-3), 199–205 (2005).
[Crossref]

Nano Lett. (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Nature (1)

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Wang, H. Zhao, L. Li, C. Xu, and J. Zhang, “Surface plasmon polariton boosted photorefractive scattering in indium tin oxide coated Fe-doped lithium niobate slabs,” Opt. Commun. 338, 505–510 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

W. L. Warren, J. Robertson, D. Dimos, B. A. Tuttle, G. E. Pike, and D. A. Payne, “Pb displacements in Pb(Zr,Ti)O3 perovskites,” Phys. Rev. B Condens. Matter 53(6), 3080–3087 (1996).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov, “Coherent backscattering from anisotropic scatterers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6798–6801 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92(3), 033903 (2004).
[Crossref] [PubMed]

M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and D. S. Wiersma, “Weak localization of light in a disordered microcavity,” Phys. Rev. Lett. 94(18), 183901 (2005).
[Crossref] [PubMed]

M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, “Weak localization of light in superdiffusive random systems,” Phys. Rev. Lett. 108(11), 110604 (2012).
[Crossref] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55(24), 2696–2699 (1985).
[Crossref] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[Crossref] [PubMed]

Phys. Today (1)

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

Proc. SPIE (1)

H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, and Z. Zheng, “Transparent electro-optic ceramics and devices,” Proc. SPIE 5644, 380–394 (2005).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martin, and I. R. Martin, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
[Crossref]

Solid State Commun. (1)

A. S. S. de Camargo, J. F. Possatto, L. A. O. Nunes, É. R. Botero, É. R. M. Andreeta, D. Garcia, and J. A. Eiras, “Infrared to visible frequency upconversion temperature sensor based on Er3+ doped PLZT transparent ceramics,” Solid State Commun. 137(1–2), 1–5 (2006).
[Crossref]

Other (1)

G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York), 371–492 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the experiment setup to monitor the fluorescence spectra of the PLZT powder. The inset is the photograph of the specimen under a pumping power of 216.5 mW/mm2. (b) The emission spectra of the powder specimen at three different powers of pumping light with a wavelength of 1480 nm.
Fig. 2
Fig. 2 Upconversion intensity as a function of the excitation power at different light emission peaks: (a) linear relationship at 526 and 538 nm, (b) log–log relationship at 550 and 563 nm, (c) log–log relationship at 656 and 678 nm, and (d) log–log relationship at 974 and 986 nm. (e) The energy level diagram of Er3+/Yb3+ ions.
Fig. 3
Fig. 3 (a) Emission spectra of the bulk and powder specimens at the same pumping power of light with a wavelength of 1480 nm. (b) The scattering image of the Er3+/Yb3+ co-doped PLZT powder. (c) The experimental setup to detect the spatial profile of backscattering light. (d) The coherent backscattering distribution of light emission at a wavelength of 550 nm.
Fig. 4
Fig. 4 (a) Schematic diagram illustrating a PLZT particle, which consists of many domains, and surface charge accumulation due to the pyroelectric effect. (b) A small domain, within which electrons are trapped by vacancies formed owing to electrical neutrality. (c) The schematic diagram of the energy levels illustrating the continuous trap distribution: ST-shallow trap levels, TAT-thermally active trap levels, TDT-thermally disconnected trap levels, and DHT-thermally disconnected trap levels.
Fig. 5
Fig. 5 (a) Experimental setup for monitoring the intensity of the probing light reflected by the specimen. (b) The dynamic intensity change of the probing light. (c) The amplification of the reflected probing light as a function of the pumping power.
Fig. 6
Fig. 6 (a) Schematic of the upconverted light spot intensity distribution. (b) The dynamic curve of the probing light intensity when the relative position of the pumping spot to the probing spot is shown in the inset at the top right side. (c) The dynamic curve of the probing light intensity when the relative position is shown in the inset in the middle. (d) The dynamic curve of the probing light intensity when the relative position is shown in the inset at the top right side.
Fig. 7
Fig. 7 (a) Relative intensity variation of the six emission peaks in the Er3+/Yb3+ co-doped PLZT powder as a function of the pumping power. (b) The emission spectra of the powder specimen in the visible range under the pumping laser with a wavelength of 1480 nm.

Metrics