Abstract

Optical wavelength filters with large tuning range and narrow bandwidth are crucial for enhancing the capability of WDM communication systems. A polymeric tunable filter for C-band, comprising a tilted Bragg grating and a mode sorting waveguide junction is proposed in this work. For dropping a certain wavelength signal, the tilted Bragg grating reflects an odd mode into an even mode and then the reflected even mode propagates towards an output port of the asymmetric Y-junction due to the mode sorting. Consequently, the output port is separated from the input port, which is not possible in an ordinary Bragg reflector. The tilted Bragg reflector with an odd–even mode coupling efficiency of 61% exhibited a maximum reflectivity of 95% for a grating of 6 mm. A linear wavelength tuning of over 10 nm was achieved for an applied thermal power of 312 mW.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction

Jin-Soo Shin, Tea-Hyun Park, Woo-Sung Chu, Chang-Hee Lee, Sang-Yung Shin, and Min-Cheol Oh
Opt. Express 23(13) 17223-17228 (2015)

Polymeric tunable wavelength filter with two-stage cascaded tilted Bragg gratings

Tae-Hyun Park, Sung-Moon Kim, and Min-Cheol Oh
Opt. Express 28(7) 10145-10152 (2020)

Polymer waveguide WDM channel selector operating over the entire C and L bands

Tae-Hyun Park, Sung-Moon Kim, Su-Hyun Park, Jun-Kyu Seo, Hak-Gyu Lee, and Min-Cheol Oh
Opt. Express 26(13) 16323-16332 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
    [Crossref]
  2. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [Crossref]
  3. L. Domash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable multiple-cavity thin film filters,” J. Lightwave Technol. 22(1), 126–135 (2004).
    [Crossref]
  4. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, “Toward tunable thin-film filters for wavelength division multiplexing applications,” Appl. Opt. 41(16), 3277–3284 (2002).
    [Crossref] [PubMed]
  5. R. Parmentier and M. Lequime, “Substrate-strain-induced tunability of dense wavelength-division multiplexing thin-film filters,” Opt. Lett. 28(9), 728–730 (2003).
    [Crossref] [PubMed]
  6. B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photonics Technol. Lett. 16(10), 2296–2298 (2004).
    [Crossref]
  7. J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
    [Crossref]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  9. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999).
    [Crossref]
  10. Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
    [Crossref]
  11. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
    [Crossref]
  12. Z. Zhang, D. de Felipe, W. Brinker, M. Kleinert, A. Maese-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bi-directional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
    [Crossref]
  13. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [Crossref] [PubMed]
  14. J.-S. Shin, T.-H. Park, W.-S. Chu, C.-H. Lee, S.-Y. Shin, and M.-C. Oh, “Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction,” Opt. Express 23(13), 17223–17228 (2015).
    [Crossref] [PubMed]
  15. C. Riziotis and M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19(1), 92–104 (2001).
    [Crossref]
  16. C. Riziotis and M. N. Zervas, “Novel full-cycle-coupler-based optical add-drop multiplexer and performance charateristics at 40-Gb/s WDM networks,” J. Lightwave Technol. 21(8), 1828–1837 (2003).
    [Crossref]
  17. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
    [Crossref]
  18. J. M. Castro, D. F. Geraghty, B. R. West, and S. Honkanen, “Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers,” Appl. Opt. 43(33), 6166–6173 (2004).
    [Crossref] [PubMed]
  19. J. Wang and L. R. Chen, “Low crosstalk Bragg grating/Mach-Zehnder interferometer optical add-drop multiplexer in silicon photonics,” Opt. Express 23(20), 26450–26459 (2015).
    [Crossref] [PubMed]
  20. G. Huang, J.-S. Shin, W.-J. Lee, T.-H. Park, W.-S. Chu, and M.-C. Oh, “Surface relief apodized grating tunable filters produced by using a shadow mask,” Opt. Express 23(16), 21090–21096 (2015).
    [Crossref] [PubMed]
  21. Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
    [Crossref]

2016 (1)

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

2015 (5)

2009 (1)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

2008 (1)

2004 (3)

2003 (2)

2002 (1)

2001 (1)

1999 (1)

1998 (3)

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[Crossref]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1989 (1)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Ahn, J.-H.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Amra, C.

Askins, G. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bennion, I.

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Brinker, W.

Castro, J. M.

Chen, L. R.

Cheung, K.-W.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Chisholm, K. E.

Chu, W.-S.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

de Felipe, D.

Dell, J. M.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Domash, L.

Erdogan, T.

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[Crossref]

Everall, L. A.

Fang, Q.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Faraone, L.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Geraghty, D. F.

Han, S. G.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Honkanen, S.

Hu, X.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Huang, G.

Iocco, A.

Ju, J. J.

Keating, A. J.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Keil, N.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kim, H.-G.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Kim, M.-S.

Kleinert, M.

Kobrinski, H.

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, C.-H.

Lee, H.-J.

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[Crossref] [PubMed]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Lee, M.-H.

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

Lee, W.-J.

Lemarchand, F.

Lequime, M.

Limberger, H. G.

Lo, G.-Q.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Ma, E.

Maese-Novo, A.

Milne, J. S.

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Moehrle, M.

Nemchuk, N.

Noh, Y.-O.

Oh, M.-C.

Oh, S. H.

Park, T.-H.

Parmentier, R.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Pickrell, G.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photonics Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Riziotis, C.

Rusli,

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Salathe, R. P.

Shin, J.-S.

Shin, S.-Y.

Song, J.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Tu, X.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Wang, A.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photonics Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Wang, J.

West, B. R.

Williams, J. A. R.

Wu, M.

Yang, Y.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Yu, B.

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photonics Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Yu, M.

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

Zawadzki, C.

Zervas, M. N.

Zhang, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[Crossref]

IEEE Commun. Mag. (2)

H. Kobrinski and K.-W. Cheung, “Wavelength-tunable optical filters: application and technologies,” IEEE Commun. Mag. 27(10), 53–63 (1989).
[Crossref]

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Yu, G. Pickrell, and A. Wang, “Thermally tunable extrinsic Fabry-Perot filter,” IEEE Photonics Technol. Lett. 16(10), 2296–2298 (2004).
[Crossref]

Y. Yang, X. Hu, J. Song, Q. Fang, M. Yu, X. Tu, G.-Q. Lo, and Rusli, “Thermo-optically tunable silicon AWG with above 600 GHz channel tunability,” IEEE Photonics Technol. Lett. 27(22), 2351–2354 (2015).
[Crossref]

J. Lightwave Technol. (6)

J. Microelectromech. Syst. (1)

J. S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, “Widely tunable MEMS-based Fabry-Perot filter,” J. Microelectromech. Syst. 18(4), 905–913 (2009).
[Crossref]

Opt. Commun. (2)

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998).
[Crossref]

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of a channel-drop filter consisting of an asymmetric Bragg reflector and a mode sorting waveguide.
Fig. 2
Fig. 2 (a) Coupling efficiency calculated as a function of the tilt angle, θt using an overlap integral between the modes along with a grating perturbation. (b) Crosstalk calculated as a function of the branch angle, θb when an even mode is launched at the two-mode waveguide.
Fig. 3
Fig. 3 Schematic fabrication procedure of polymeric tunable channel drop filters, and the cross-section of the fabricated waveguide.
Fig. 4
Fig. 4 Microscope photographs of the asymmetric Y-branch appearance after oxygen plasma etching of the lower cladding fabricated by using the mask of (a) metal and (b) photoresist.
Fig. 5
Fig. 5 (a) Schematic diagram of Mach-Zehnder device comprising of two cascaded mode sorting devices for the experimental characterization of the mode sorting efficiency, (b) optical interference signal for the device etched by using a metal mask, and (c) the output signal from the sample etched by using a photoresist mask.
Fig. 6
Fig. 6 Reflection spectra measured from the output port and the input port using a circulator, and the transmission spectrum of a channel-drop filter. The strongest reflection peak caused by the NOEW conversion is important for channel dropping, while other reflection peaks also appear due to the NEEW, NOON, and NEON conversions.
Fig. 7
Fig. 7 (a) Reflection spectra tuned by applying thermal power and (b) peak wavelength as a function of the applied thermal power.

Metrics