Abstract

The hybrid liquid crystal long-period fiber grating structure presented here uses the 1702 liquid crystal as a thin layer on the bare long-period fiber grating. To achieve the highest long-period fiber grating sensitivity to the liquid crystal layer presence, a UV-induced host grating, with a relatively short period of 226.8 μm, was chosen. This design makes it possible to couple light from the propagating core mode to a cladding mode at a wavelength near the phase-matching turning point. This phenomenon is exploited here for the first time to measure the thermal and electric field responses of the liquid crystal long-period fiber grating structure. All experimental results achieved in this work are supported by theoretical analysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers

Danny Noordegraaf, Lara Scolari, Jesper Lægsgaard, Lars Rindorf, and Thomas Tanggaard Alkeskjold
Opt. Express 15(13) 7901-7912 (2007)

Analysis of temperature-dependent mode transition in nanosized liquid crystal layer-coated long period gratings

Haimei Luo, Xinwan Li, Shuguang Li, and Jianping Chen
Appl. Opt. 48(25) F95-F100 (2009)

Long-period fiber grating: a specific design for biosensing applications

Sankhyabrata Bandyopadhyay, Palas Biswas, Francesco Chiavaioli, Tanoy Kumar Dey, Nandini Basumallick, Cosimo Trono, Ambra Giannetti, Sara Tombelli, Francesco Baldini, and Somnath Bandyopadhyay
Appl. Opt. 56(35) 9846-9853 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Rego, “A review of refractometric sensors based on long period fibre gratings,” Sci. World J. 2013, 913418 (2013).
    [Crossref] [PubMed]
  2. E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
    [Crossref] [PubMed]
  3. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
    [Crossref] [PubMed]
  4. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  5. I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
    [Crossref] [PubMed]
  6. S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
    [Crossref] [PubMed]
  7. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
    [Crossref]
  8. O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.
  9. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23(7), 509–510 (1998).
    [Crossref] [PubMed]
  10. T. A. Eftimov, W. J. Bock, P. Mikulic, and J. Chen, “Müller–Stokes analysis of long-period gratings Part II: Randomly birefringent LPGs,” J. Lightwave Technol. 27(17), 3759–3764 (2009).
    [Crossref]
  11. J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
    [Crossref]
  12. I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals” (World Scientific Publ., 1997).
  13. J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  14. O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
    [Crossref]
  15. S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
    [Crossref]
  16. H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).
  17. A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
    [Crossref]
  18. H. Luo, X. Li, S. Li, and J. Chen, “Analysis of temperature-dependent mode transition in nanosized liquid crystal layer-coated long period gratings,” Appl. Opt. 48(25), F95–F100 (2009).
    [Crossref] [PubMed]
  19. A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
    [Crossref]
  20. A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
    [Crossref]
  21. J. G. Delly, “The Michel-Lévy interference color chart. The microscopist’s magical color key,” (Modern Microscopy, 2003), http://www.modernmicroscopy.com/main.asp?article=15
  22. M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
    [Crossref]
  23. M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).
  24. D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, and H.-S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
    [Crossref] [PubMed]
  25. S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
    [Crossref]
  26. K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
    [Crossref] [PubMed]
  27. S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

2015 (3)

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” Sci. World J. 2013, 913418 (2013).
[Crossref] [PubMed]

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

2012 (6)

A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
[Crossref]

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

2009 (3)

2005 (1)

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

2004 (3)

J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
[Crossref]

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

2002 (1)

2001 (1)

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

1998 (1)

André, P.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Anglos, D.

Araújo, F. M.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Arce-Diego, J. L.

J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
[Crossref]

Baek, S.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Bednarska, K.

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

Bennion, I.

Bock, W. J.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, A. Kumar, and P. Mikulic, “Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings,” Opt. Lett. 38(10), 1666–1668 (2013).
[Crossref] [PubMed]

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
[Crossref]

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

T. A. Eftimov, W. J. Bock, P. Mikulic, and J. Chen, “Müller–Stokes analysis of long-period gratings Part II: Randomly birefringent LPGs,” J. Lightwave Technol. 27(17), 3759–3764 (2009).
[Crossref]

Brzozowska, E.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

Budaszewski, D.

Chen, J.

Chigrinov, V. G.

Chung, K.-W.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Chychlowski, M. S.

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

Chychlowskia, M. S.

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

Czapla, A.

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
[Crossref]

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

Dabrowski, R.

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

Del Villar, I.

Doane, K. J.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Douay, M.

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Duhem, O.

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Eftimov, T. A.

Ertman, S.

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

Frazão, O.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Furue, H.

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Gamian, A.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

Górska, S.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

Gu, X. J.

Henniont, J. F.

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Ishikawa, T.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Iwabata, K.

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Jeong, Y.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Kim, H. R.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Kim, Y.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Klini, A.

Koba, M.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

Konstantaki, M.

Kravchuk, R.

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

Kumar, A.

Kwok, H.-S.

Lavrentovich, O. D.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Lee, B.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Lee, S. D.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Lee, Y. W.

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

Li, J.

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Li, S.

Li, X.

Lima, M.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Luo, H.

Mikulic, P.

Muriel, M. A.

J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
[Crossref]

Niehaus, G. D.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Nowinowski-Kruszelnicki, E.

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

Pawlik, K.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

Pereda-Cubian, D.

J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
[Crossref]

Pissadakis, S.

Rego, G.

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” Sci. World J. 2013, 913418 (2013).
[Crossref] [PubMed]

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Rivoallan, L.

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Rocha, J. F.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Sakaguchi, K.

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Salgado, H. M.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Schneider, T.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Seki, Y.

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Shiyanovskii, S. V.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Shu, X.

Smalyukh, I. I.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Smietana, M.

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” J. Lightwave Technol. 30(8), 1080–1084 (2012).
[Crossref]

Srivastava, A. K.

Sugai, U.

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Tam, A. M. W.

Teixeira, A.

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

Tripathi, S. M.

Warenghem, M.

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Wójcik, J.

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

Wolinski, T. R.

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, and H.-S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

A. Czapla, W. J. Bock, T. R. Woliński, R. Dabrowski, and E. Nowinowski-Kruszelnicki, “Tuning Cladding-Mode Propagation Mechanisms in Liquid Crystal Long-Period Fiber Gratings,” J. Lightwave Technol. 30(8), 1201–1207 (2012).
[Crossref]

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
[Crossref]

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

Woolverton, C. J.

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Wu, S.-T.

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Yaroshchuk, O.

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

Yin, S.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Zhang, L.

Zhu, X.

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93–99 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Li and S.-T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. A, Pure Appl. Opt. (1)

J. L. Arce-Diego, D. Pereda-Cubian, and M. A. Muriel, “Polarization effects in short- and long-period fiber gratings: a generalized approach,” J. Opt. A, Pure Appl. Opt. 6(3), S45–S51 (2004).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

S. V. Shiyanovskii, O. D. Lavrentovich, T. Schneider, T. Ishikawa, I. I. Smalyukh, C. J. Woolverton, G. D. Niehaus, and K. J. Doane, “Lyotropic chromonic liquid crystals for biological sensing applications,” Mol. Cryst. Liq. Cryst. 434(1), 259587 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee, and S. D. Lee, “Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 399–406 (2004).

A. Czapla, T. R. Woliński, W. J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, and J. Wójcik, “Long-Period Fiber Gratings with Low-Birefringence Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 502(1), 65–76 (2009).
[Crossref]

M. S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, and T. R. Woliński, “Escaped radial and planar liquid crystal orientation inside capillaries,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 553(1), 127–132 (2012).
[Crossref]

Molecules (1)

K. Iwabata, U. Sugai, Y. Seki, H. Furue, and K. Sakaguchi, “Applications of Biomaterials to Liquid Crystals,” Molecules 18(4), 4703–4717 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Yin, K.-W. Chung, and X. Zhu, “A novel all-optic tunable long-period grating using a unique double-cladding layer,” Opt. Commun. 196(1-6), 181–186 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

M. S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, and T. R. Woliński, “Liquid crystal alignment in cylindrical microcapillaries,” Opto-Electron. Rev. 20, 47–52 (2012).

Proc. SPIE (2)

S. Ertman, K. Bednarska, A. Czapla, and T. R. Wolinski, “Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology,” Proc. SPIE 9634, 96345F (2015).

A. Czapla, W. J. Bock, and T. R. Wolinski, “Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers,” Proc. SPIE 8421, 84215H (2012).
[Crossref]

Sci. World J. (1)

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” Sci. World J. 2013, 913418 (2013).
[Crossref] [PubMed]

Other (4)

O. Frazão, G. Rego, M. Lima, A. Teixeira, F. M. Araújo, P. André, J. F. Rocha, and H. M. Salgado, “EDFA gain flattening using long-period fiber gratings based on the electric arc technique,” in Proc. London Communications Symposium 2001 (2001), pp. 55–57.

J. G. Delly, “The Michel-Lévy interference color chart. The microscopist’s magical color key,” (Modern Microscopy, 2003), http://www.modernmicroscopy.com/main.asp?article=15

I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals” (World Scientific Publ., 1997).

O. Duhem, J. F. Henniont, M. Warenghem, M. Douay, and L. Rivoallan, “Long-period fiber gratings modulation by liquid crystal cladding,” in Proc. 6th IEEE Conf. on Telecommunications (1998), pp. 195–196.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Measured and simulated thermal response of the host LPFG (based on PS1250/1500 fiber, with period and length of 226.8 µm and 3.5 cm, respectively).
Fig. 2
Fig. 2 (a) The 1702 LC thermal dependencies of ordinary no, extraordinary ne, as well silica glass ncl refractive indices measured at wavelength of 589 nm. (b) The 1702 LC temperature dependence of electric permittivity constants. (c) Experimental setup with picture and schema of the LC-LPFG housing unit
Fig. 3
Fig. 3 Simulated thermal sensitivities for the LPFG in air and coated with the 1702 LC layer. The spectral range has been selected arbitrarily in order to show the variations of the attenuation band close to the TAP.
Fig. 4
Fig. 4 Thermal characteristics of the 1702 LC estimated for the wavelength of 1550 nm (solid line) and applied to the simulation (dash line).
Fig. 5
Fig. 5 Mode structure plot versus LC layer refractive index calculated for the wavelength of 1550 nm.
Fig. 6
Fig. 6 Measured transmission spectra versus temperature for the LPFG coated with the 1702 LC layer
Fig. 7
Fig. 7 Simulated transmission spectra versus temperature for the LPFG coated with the 1702 LC layer.
Fig. 8
Fig. 8 Simulated transmission in the off- and on-voltage states for the UV-induced LPFG calculated for three different ambient temperature: 36.4°C (a), 50.9 °C (b) and 60.2 °C (c).
Fig. 9
Fig. 9 (a) Transmission spectra in the off- and on-voltage state measured for the LPFG coated with 1702 LC layer when the ambient temperature was stabilized to be 36.4°C, 50.9 °C and 60.2 °C. (b) The attenuation band depth change versus electric field measured for three different values of temperature (36.4°C, 50.9 °C and 60.2 °C) which correspond with three different values of wavelength operation (1520.8 nm, 1564.4 nm and 1588.4 nm).
Fig. 10
Fig. 10 Thermal sensitivities in on- and off-voltage states for the attenuation band measured in the spectral range from 1185 nm to 1240 nm.

Tables (1)

Tables Icon

Table 1 Specification of the LPFG model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n co, T =  n co, T REF +(T T REF ) n co, T REF ξ co
n cl, T =  n cl, T REF +(T T REF ) n cl, T REF ξ cl

Metrics