Abstract

In a resonator integrated optic gyro (RIOG) employing a planar optical waveguide ring, the interference between backreflected light and signal light will not only cause nonreciprocal drift of cw and ccw resonance frequencies, but also deteriorate the original signal waveform of the resonator output. If contra-phase triangular phase modulation (CPM) were applied, a cosine-like ripple, whose initial phase varies randomly, would superpose upon the quasi-square waveform of the resonator output, resulting in increment of noise and the gyro’s angle random walk (ARW). Therefore, in-phase triangular phase modulation (IPM) technique is proposed and used to eliminate the ripple and improve the waveform quality of the resonator output, and the gyro’s ARW is obviously reduced from 3 to 0.8 deg/h1/2 compared to that of CPM. This enlightens a new way to design the scheme of backreflection/backscattering suppression.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation

Yinzhou Zhi, Lishuang Feng, Junjie Wang, and Yichuang Tang
Appl. Opt. 54(1) 114-122 (2015)

Low-delay, high-bandwidth frequency-locking loop of resonator integrated optic gyro with triangular phase modulation

Yinzhou Zhi, Lishuang Feng, Ming Lei, and Kunbo Wang
Appl. Opt. 52(33) 8024-8031 (2013)

Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology

Lishuang Feng, Ming Lei, Huilan Liu, Yinzhou Zhi, and Junjie Wang
Appl. Opt. 52(8) 1668-1675 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
    [Crossref]
  2. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
    [Crossref]
  3. L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
    [Crossref] [PubMed]
  4. J. Wang, L. Feng, Y. Tang, and Y. Zhi, “Resonator integrated optic gyro employing trapezoidal phase modulation technique,” Opt. Lett. 40(2), 155–158 (2015).
    [Crossref] [PubMed]
  5. H. Ma, J. Zhang, L. Wang, and Z. Jin, “Double closed-loop resonant micro optic gyro using hybrid digital phase modulation,” Opt. Express 23(12), 15088–15097 (2015).
    [Crossref] [PubMed]
  6. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
    [Crossref] [PubMed]
  7. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
    [Crossref]
  8. D. D’Agostino, G. Carnicella, C. Ciminelli, P. Thijs, P. J. Veldhoven, H. Ambrosius, and M. Smit, “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express 23(19), 25143–25157 (2015).
    [Crossref] [PubMed]
  9. J. Li, M. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Opt. Soc. of Am., pp. h2A–h3A (2015).
  10. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
    [PubMed]
  11. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  12. J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
    [Crossref] [PubMed]
  13. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
    [Crossref] [PubMed]
  14. Y. Yan, H. Ma, and Z. Jin, “Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber,” Opt. Express 23(3), 2002–2009 (2015).
    [Crossref] [PubMed]
  15. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 degrees polarization-axis rotated splices,” Opt. Express 18(2), 1677–1683 (2010).
    [Crossref] [PubMed]
  16. H. Ma, X. Li, G. Zhang, and Z. Jin, “Reduction of optical Kerr-effect induced error in a resonant micro-optic gyro by light-intensity feedback technique,” Appl. Opt. 53(16), 3465–3472 (2014).
    [Crossref] [PubMed]
  17. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46(1), 69–74 (2008).
    [Crossref]
  18. K. Hotate and K. Tabe, “Drift of an optical fiber gyroscope caused by the Faraday effect: influence of the earth’s magnetic field,” Appl. Opt. 25(7), 1086–1092 (1986).
    [Crossref] [PubMed]
  19. H. C. Lefevre, The fiber-optic gyroscope (Artech house, 2014).
  20. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29(1), 85–90 (2011).
    [Crossref]
  21. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation,” Appl. Opt. 54(1), 114–122 (2015).
    [Crossref] [PubMed]

2015 (5)

2014 (3)

2013 (3)

2012 (2)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46(1), 69–74 (2008).
[Crossref]

1986 (1)

1984 (1)

Ambrosius, H.

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
[Crossref]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
[Crossref]

Campanella, C. E.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
[Crossref]

Carnicella, G.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ciminelli, C.

D. D’Agostino, G. Carnicella, C. Ciminelli, P. Thijs, P. J. Veldhoven, H. Ambrosius, and M. Smit, “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express 23(19), 25143–25157 (2015).
[Crossref] [PubMed]

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
[Crossref]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
[Crossref]

D’Agostino, D.

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
[Crossref]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
[Crossref]

Feng, L.

He, Z.

Higashiguchi, M.

Hopper, D. J.

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46(1), 69–74 (2008).
[Crossref]

Hotate, K.

Iwatsuki, K.

Jaatinen, E.

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46(1), 69–74 (2008).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Jin, Z.

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Lei, M.

Li, H.

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, X.

Liu, H.

Ma, H.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Passenberg, W.

Smit, M.

Soares, F. M.

Tabe, K.

Tang, Y.

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
[Crossref]

Thijs, P.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Veldhoven, P. J.

Wang, J.

Wang, L.

Wang, Q.

Wang, W.

Wang, X.

Yan, Y.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Zhang, G.

Zhang, J.

Zhi, Y.

Adv. Opt. Photonics (1)

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2(3), 370–404 (2010).
[Crossref]

Appl. Opt. (5)

IEEE Photonics J. (1)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

J. Eur. Opt. Soc. Rap. Public. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rap. Public. 9, 14013 (2014).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[PubMed]

Nat. Photonics (1)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46(1), 69–74 (2008).
[Crossref]

Opt. Lett. (1)

Other (2)

J. Li, M. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Opt. Soc. of Am., pp. h2A–h3A (2015).

H. C. Lefevre, The fiber-optic gyroscope (Artech house, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch map of backreflections in RIOG. C1, C2: evanescent wave coupler; ISO: isolator; PM: Y-branch phase modulator; PD: photodetector; color arrows: signal light and its backreflected light for CCW (blue) and CW (red).
Fig. 2
Fig. 2 Resonator’s original output signal under triangular phase modulation. The resonator’s diameter is 5cm. The unit propagation loss of waveguide is 0.5dB/m@1550nm. Other parameters used in simulations are: f1 = 1MHz, f2 = 1MHz, Vpp/Vπ = 2, kc = 0.01, αc = 0.01dB. a) at rest; b) rotating.
Fig. 3
Fig. 3 Simulation of relation between resonator’s original output signal and the initial phase of CW incident light. If CW initial phase changes while the CCW’s remains unchanged, their phase difference changes. a) IPM; b) CPM. T1, T2: sampling regions in time domain.
Fig. 4
Fig. 4 Experimental results of resonator’s output waveform under a) CPM and b) IPM. The bias is −1.03V when the laser is turned off.
Fig. 5
Fig. 5 Stationary test results of RIOG. a) pseudo-input test; b) stationary test; c) power spectrum density of the stationary test data; d) Allan variance of the data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ARW = cλ 6FAN e I
E AC = E 0 m= + Y cw_m e j2π f m t h T ( f cw ), E BD = E 0 m= + Y ccw_m e j2π f m t h T ( f ccw )
E BDC = E 0 e i(θ+ φ 1 ) r D e iπ h R ( f cw ) E BD , E ACD = E 0 e i(θ+ φ 2 ) r C e iπ h R ( f ccw ) E AC
h R (f)= 1 α C 1 k C ( 1 k C 1q e i2πfτ ), h T (f)= k C (1 α C ) 1 α L/2 1q e i2πfτ
q= 1 k C 1 1 α C 1 1 α L/2 1 k C 2 1 α C 2 1 α L/2 =(1 k C )(1 α C )(1 α L/2 )
Y= 1 2 e i M+mπ 2 sinc M+mπ 2π + 1 2 e i Mmπ 2 sinc Mmπ 2π
E cw = E AC + E BDC , E ccw = E BD + E ACD
I cw E cw E cw * , I ccw E ccw E ccw *

Metrics