Abstract

We present a comprehensive model for predicting the full performance of a second harmonic generation-optical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in case of chirped input pulse. As an example, calculations for bandwidth transform limited and chirped pulses of sub-picosecond duration in beta barium borate crystal are presented.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Generation of high contrast and high spatial quality idler from a low-gain optical parametric amplifier

A. B. Sharba, G. Nersisyan, M. Zepf, N. H. Stuart, R. A. Smith, M. Borghesi, and G. Sarri
Appl. Opt. 55(33) 9341-9346 (2016)

Kilohertz femtosecond UV-pumped visible β-barium borate and lithium triborate optical parametric generator and amplifier

Hong Wang, Kam Sing Wong, Daoqun Deng, Zuyan Xu, George K. L. Wong, and Jingyuan Zhang
Appl. Opt. 36(9) 1889-1893 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G Mourou, “Compression of amplified chirped optical pulses,” Opt. Lett. 55(6), 447–449 (1985).
  2. A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
    [Crossref]
  3. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 (2006).
    [Crossref] [PubMed]
  4. D. Homoelle, A. L. Gaeta, V. Yanovsky, and G Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–11648 (2002).
    [Crossref]
  5. C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
    [Crossref]
  6. J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
    [Crossref]
  7. M. P. Kalashnikov, E. Risse, H. Schnnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005).
    [Crossref] [PubMed]
  8. R. Shah, R. Johnson, T. Shimada, K. Flippo, J. Fernandez, and B. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34(15), 2273–2275 (2009).
    [Crossref] [PubMed]
  9. D. M. Gold, “Direct measurement of prepulse suppression by use of a plasma shutter,” Opt. Lett. 19(23), 2006–2008 (1994).
    [Crossref] [PubMed]
  10. B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
    [Crossref]
  11. I. Jovanovic, C. P. J. Barty, C. Haefner, and B. Wattellier, “Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification,” Opt. Lett. 31(6), 787–789 (2006).
    [Crossref] [PubMed]
  12. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011).
    [Crossref] [PubMed]
  13. D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128 (4), 1761–1775 (1962).
    [Crossref]
  14. J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142 (1), 126–136 (1966).
    [Crossref]
  15. J. E. Bjorkholm, “Beam divergence effects on nonlinear frequency mixing,” Appl. Phys. 71 (3), 1091–1101 (1992).
    [Crossref]
  16. I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
    [Crossref]
  17. V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti: sapphire laser pulses,” Opt. Lett. 20 (2), 198–200 (1995).
    [Crossref] [PubMed]
  18. J. Y. Zhang, J. Y. Huang, H. Wang, K. S. Wong, and G. K. Wong, “Second-harmonic generation from regeneratively amplified femtosecond laser pulses in BBO and LBO crystals,” J. Opt. Soc. Am. B 15 (1), 200–209 (1998).
    [Crossref]
  19. A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).
  20. T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
    [Crossref]
  21. H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39 (12), 1600–1618 (2003).
    [Crossref]
  22. Y. Wang and B. Luther-Davies, “Optical-parametric-amplification-based prepulse eliminator for a chirped-pulse-amplification Nd: glass laser,” J. Opt. Soc. Am. B 11 (9), 1531–1538 (1994).
    [Crossref]
  23. G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74 (1), 1–18 (2003).
    [Crossref]
  24. M. Bache, H. Guo, B. Zhou, and X. Zeng, “The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β-BaB2O4) nonlinear crystal,” Opt. Mater. Express 3(3) 357–382 (2013).
    [Crossref]
  25. A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
    [Crossref]
  26. K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).
  27. E. K. Blum, “A modification of the Runge-Kutta fourth-order method,” Math. Comput. 16 (78), 176–187 (1962).
    [Crossref]
  28. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23 (5), 575–592 (1987).
    [Crossref]
  29. W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
    [Crossref]
  30. A. Richard, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432–444 (1979).
    [Crossref]
  31. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
    [Crossref]
  32. Huang Shu-Wei, Jeffrey Moses, and Franz X. Krtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
    [Crossref]
  33. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
    [Crossref]

2013 (2)

A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

M. Bache, H. Guo, B. Zhou, and X. Zeng, “The anisotropic Kerr nonlinear refractive index of the beta-barium borate (β-BaB2O4) nonlinear crystal,” Opt. Mater. Express 3(3) 357–382 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (2)

R. Shah, R. Johnson, T. Shimada, K. Flippo, J. Fernandez, and B. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34(15), 2273–2275 (2009).
[Crossref] [PubMed]

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

2008 (2)

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

2006 (2)

2005 (1)

2004 (2)

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

2003 (2)

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39 (12), 1600–1618 (2003).
[Crossref]

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74 (1), 1–18 (2003).
[Crossref]

2002 (2)

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

D. Homoelle, A. L. Gaeta, V. Yanovsky, and G Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–11648 (2002).
[Crossref]

2001 (2)

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
[Crossref]

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

2000 (1)

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
[Crossref]

1998 (3)

1995 (1)

1994 (2)

1992 (1)

J. E. Bjorkholm, “Beam divergence effects on nonlinear frequency mixing,” Appl. Phys. 71 (3), 1091–1101 (1992).
[Crossref]

1987 (1)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23 (5), 575–592 (1987).
[Crossref]

1985 (1)

D. Strickland and G Mourou, “Compression of amplified chirped optical pulses,” Opt. Lett. 55(6), 447–449 (1985).

1979 (1)

A. Richard, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432–444 (1979).
[Crossref]

1966 (1)

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142 (1), 126–136 (1966).
[Crossref]

1962 (2)

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128 (4), 1761–1775 (1962).
[Crossref]

E. K. Blum, “A modification of the Runge-Kutta fourth-order method,” Math. Comput. 16 (78), 176–187 (1962).
[Crossref]

Aoyama, M.

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

Bache, M.

Barty, C. P. J.

Bindra, K.S.

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

Bisht, P. B.

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm, “Beam divergence effects on nonlinear frequency mixing,” Appl. Phys. 71 (3), 1091–1101 (1992).
[Crossref]

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142 (1), 126–136 (1966).
[Crossref]

Blum, E. K.

E. K. Blum, “A modification of the Runge-Kutta fourth-order method,” Math. Comput. 16 (78), 176–187 (1962).
[Crossref]

Borghesi, M

A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Cao, D. X.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Cerullo, G.

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74 (1), 1–18 (2003).
[Crossref]

Chen, X. W.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Chuang, L.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Chvykov, V.

Comaskey, B. J.

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
[Crossref]

Dement’ev, A.

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

Dromey, B.

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23 (5), 575–592 (1987).
[Crossref]

Faure, J

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

Fernandez, J.

Flippo, K.

Foster, P.

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

Gaeta, A. L.

Girdauskas, V.

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

Gold, D. M.

Guo, H.

Haefner, C.

Han, W.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Hegelich, B.

Homoelle, D.

Hong, K. H.

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

Huang, J. Y.

Huang, Y.

Itatani, J

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

Johnson, R.

Jovanovic, I.

I. Jovanovic, C. P. J. Barty, C. Haefner, and B. Wattellier, “Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification,” Opt. Lett. 31(6), 787–789 (2006).
[Crossref] [PubMed]

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
[Crossref]

Kalashnikov, M. P.

Kalinchenko, G.

Kalintsev, A. G.

Kang, Y. H.

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

Kar, S.

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

Kasper, A.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
[Crossref]

Kazragyte, R.

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

Kim, J. H.

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

Kleinman, D. A.

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128 (4), 1761–1775 (1962).
[Crossref]

Kobayashi, T.

Krtner, Franz X.

Krylov, V.

Leng, Y.

Li, D.

Li, R.

Li, R. X.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Lin, L. H.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Luther-Davies, B.

Macchi, A.

A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Moses, Jeffrey

Mourou, G

D. Homoelle, A. L. Gaeta, V. Yanovsky, and G Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–11648 (2002).
[Crossref]

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

D. Strickland and G Mourou, “Compression of amplified chirped optical pulses,” Opt. Lett. 55(6), 447–449 (1985).

Nam, C. H.

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

Nantel, M

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

Nautiyal, A.

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

Oak, S.M.

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

Passoni, M.

A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Pennington, D. M.

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
[Crossref]

Pretzler, G.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
[Crossref]

Qian, L. J.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Rebane, A.

Reed, S.

Richard, A.

A. Richard, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432–444 (1979).
[Crossref]

Risse, E.

Rousseau, P.

Sakane, I.

Sandner, W.

Schnnagel, H.

Schwoerer, H.

Shah, R.

Shimada, T.

Shirakawa, A.

Shu-Wei, Huang

Silvestri, S. D.

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74 (1), 1–18 (2003).
[Crossref]

Strickland, D.

D. Strickland and G Mourou, “Compression of amplified chirped optical pulses,” Opt. Lett. 55(6), 447–449 (1985).

Vrublevskaja, O.

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

Wang, H.

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39 (12), 1600–1618 (2003).
[Crossref]

J. Y. Zhang, J. Y. Huang, H. Wang, K. S. Wong, and G. K. Wong, “Second-harmonic generation from regeneratively amplified femtosecond laser pulses in BBO and LBO crystals,” J. Opt. Soc. Am. B 15 (1), 200–209 (1998).
[Crossref]

Wang, J. L.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Wang, Y.

Watanabe, S

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

Wattellier, B.

Weiner, A. M.

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39 (12), 1600–1618 (2003).
[Crossref]

Wild, U. P.

Witte, K. J.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
[Crossref]

Wong, G. K.

Wong, K. S.

Xu, Y.

Xu, Z.

Xu, Z. Z.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Yamakawa, K.

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

Yang, Y. S.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Yanovsky, V.

Yonemura, M.

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

Zeng, X.

Zepf, M.

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

Zhang, C.

Zhang, C. M.

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

Zhang, J. Y.

Zhang, T.

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

Zheng, W. G.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Zhou, B.

Zhu, Q. H.

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Appl. Phys. (2)

J. E. Bjorkholm, “Beam divergence effects on nonlinear frequency mixing,” Appl. Phys. 71 (3), 1091–1101 (1992).
[Crossref]

I. Jovanovic, B. J. Comaskey, and D. M. Pennington, “Angular effects and beam quality in optical parametric amplification,” Appl. Phys. 90 (9), 4328–4337 (2001).
[Crossref]

Appl. Phys. B (1)

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70 (1), 1–9 (2000).
[Crossref]

Chin. Phys. Lett. (1)

C. M. Zhang, J. L. Wang, L. Chuang, X. W. Chen, L. H. Lin, R. X. Li, and Z. Z. Xu, “Pulse temporal cleaner based on nonlinear ellipse rotation by using BK7 glass plate,” Chin. Phys. Lett. 25(7), 2504–2507 (2008).
[Crossref]

IEEE J. Quantum Electron. (3)

H. Wang and A. M. Weiner, “Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion,” IEEE J. Quantum Electron. 39 (12), 1600–1618 (2003).
[Crossref]

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23 (5), 575–592 (1987).
[Crossref]

A. Richard, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432–444 (1979).
[Crossref]

J. Opt. Soc. Am. B (2)

Jp. J. Appl. Phys. (1)

T. Zhang, M. Yonemura, M. Aoyama, and K. Yamakawa, “A simulation code for tempo-spatial analysis of three-wave interaction with ultrashort- and ultrahigh-intensity laser pulses,” Jp. J. Appl. Phys. 40 (11), 6455–6456 (2001).
[Crossref]

Math. Comput. (1)

E. K. Blum, “A modification of the Runge-Kutta fourth-order method,” Math. Comput. 16 (78), 176–187 (1962).
[Crossref]

Nonlinear Anal. (1)

K. H. Hong, J. H. Kim, Y. H. Kang, and C. H. Nam, “Numerical treatment of short laser pulse compression in transient stimulated Brillouin scattering,” Nonlinear Anal. 7 (1), 3–29 (2002).

Nonlinear Analysis (1)

A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, “Numerical analysis of short pulse optical parametric amplification using type I phase matching,” Nonlinear Analysis 9 (1), 39–53 (2004).

Opt. Commun. (1)

J Itatani, J Faure, M Nantel, G Mourou, and S Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1), 70–74 (1998).
[Crossref]

Opt. Laser Technol. (1)

A. Nautiyal, P. B. Bisht, K.S. Bindra, and S.M. Oak, “Effects of thickness of β-barium borate and angle of non-collinearity on the fs pulse generation by optical parametric amplification,” Opt. Laser Technol. 41(5), 539–544 (2009).
[Crossref]

Opt. Lett. (11)

D. Strickland and G Mourou, “Compression of amplified chirped optical pulses,” Opt. Lett. 55(6), 447–449 (1985).

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[Crossref]

D. Homoelle, A. L. Gaeta, V. Yanovsky, and G Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–11648 (2002).
[Crossref]

M. P. Kalashnikov, E. Risse, H. Schnnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005).
[Crossref] [PubMed]

I. Jovanovic, C. P. J. Barty, C. Haefner, and B. Wattellier, “Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification,” Opt. Lett. 31(6), 787–789 (2006).
[Crossref] [PubMed]

V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 (2006).
[Crossref] [PubMed]

R. Shah, R. Johnson, T. Shimada, K. Flippo, J. Fernandez, and B. Hegelich, “High-temporal contrast using low-gain optical parametric amplification,” Opt. Lett. 34(15), 2273–2275 (2009).
[Crossref] [PubMed]

Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011).
[Crossref] [PubMed]

Huang Shu-Wei, Jeffrey Moses, and Franz X. Krtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
[Crossref]

D. M. Gold, “Direct measurement of prepulse suppression by use of a plasma shutter,” Opt. Lett. 19(23), 2006–2008 (1994).
[Crossref] [PubMed]

V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti: sapphire laser pulses,” Opt. Lett. 20 (2), 198–200 (1995).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optik-Int. J. Light Electron Opt. (1)

W. Han, W. G. Zheng, Y. S. Yang, D. X. Cao, Q. H. Zhu, and L. J. Qian, “Phase matching limitation of high-efficiency second-harmonic generation in both phase-and group-velocity-matched structures,” Optik-Int. J. Light Electron Opt. 119 (3), 122–126 (2008).
[Crossref]

Phys. Rev. (2)

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128 (4), 1761–1775 (1962).
[Crossref]

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142 (1), 126–136 (1966).
[Crossref]

Rev. Mod. Phys. (1)

A. Macchi, M Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Rev. Sci. Instrum. (2)

B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror a subpicosecond optical switch for ultrahigh power lasers,” Rev. Sci. Instrum. 75(3), 645–649 (2004).
[Crossref]

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74 (1), 1–18 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 A layout of a SHG-OPA based temporal contrast enhancement system, BS: beam splitter, DM: dielectric mirror, BD: beam damper and DL: delay line.
Fig. 2
Fig. 2 The dependence of Lm on the initial phase mismatch and the input intensity in BBO crystal.
Fig. 3
Fig. 3 SHG efficiency as a function of the crystal length of (a) pulses of 5 GW/cm2 intensity, 1 mrad divergence, 5.44 nm bandwidth and of different durations, (b) TL pulses of 5 GW/cm2 intensity, 500 fs duration, about 3.26 nm bandwidth and different beam divergence angles, (c) TL pulses of 500 fs duration and 1 mrad beam divergence, about 3.26 nm bandwidth and different input intensities.
Fig. 4
Fig. 4 SHG efficiency as a function of the crystal length of (a) pulses with 500 fs duration, 5 GW/cm2 intensity and different bandwidths, (b) pulses of 5 nm spectral bandwidth and different chirp rates, f values correspond to T= 326, 418, 615 and 850 fs respectively, the input beam having energy 170 µJ and 2.8 mm diameter,.
Fig. 5
Fig. 5 The variation of the duration of the SHG pulses that are generated from input pulses of different spectral bandwidths all of 500 fs duration and intensity 5 GW/cm2 as a function of the crystal length.
Fig. 6
Fig. 6 a: SHG pulse duration as a function of the crystal length at different pump intensities, input pulse duration is 500 fs, b: temporal profiles of SHG pulse that is resulting from 500 fs pulse of 10 GW/cm2 intensity at different places along the crystal.
Fig. 7
Fig. 7 (a)–(c) Spectra of SHG pulse which are generated from pulses of 500 fs and 6.2 nm bandwidth and different beam divergence for two levels of the input intensity and using two crystals of different thicknesses (a) pump intensity 5 GW/cm2 in 2 mm crystal, (b) pump intensity 5 GW/cm2 in 3 mm crystal and (c) pump intensity 10 GW/cm2 in 2 mm crystal; (d) SHG conversion efficiency of 500 fs pulses having 6.2 nm bandwidth along 3 mm BBO. The curve for the smaller beam divergence is presented for comparison.
Fig. 8
Fig. 8 (a) and (b): the configurations and the phase mismatch angles of a monochromatic beam and a beam of finite bandwidth respectively, (c): the phase matching tuning curve of the SHG.
Fig. 9
Fig. 9 The spectral acceptance function of the SHG process for 500 fs input pulse for (a) 5 Gw/cm2 pump intensities in 3 mm crystal, (b) 10 Gw/cm2 pump intensities in 3 mm crystal, (c) 5 Gw/cm2 pump intensities in 2 mm crystal and (d) 10 Gw/cm2 pump intensities in 2 mm crystal.
Fig. 10
Fig. 10 SHG pulse duration as a function of the crystal length, input pulses are of different divergence all of 500 fs duration, 6.2 nm bandwidth and 5 GW/cm2 intensity.
Fig. 11
Fig. 11 Normalized energies of pump, signal and idler as functions of the crystal length, total input intensity to the system is 5 GW/cm2, the seed pulse duration is 500 fs, the pump is 480 fs and the external non-collinear angle is 0.6o.
Fig. 12
Fig. 12 (a) The energy conversion efficiency of the system, idler energy to the total input energy to the system, for TL pulse of 500 fs duration and 5 GW/cm2 intensity at the system input when the seed and the pump are perfectly synchronized and when the seed is delayed, (b) the variation of the idler pulse duration along the crystal in both cases.
Fig. 13
Fig. 13 Idler pulse resulting from 4 mm crystal in time and space, the input pulse to the system is TL of 500 fs duration and 5 GW/cm2 intensity.
Fig. 14
Fig. 14 M2 values as a function of the crystal length of idler resulting from 500 fs pulse of 6 GW/cm2 intensity at the system input.
Fig. 15
Fig. 15 Pulse duration across the beam as a function of the crystal length of idler resulting from 500 fs pulse of 6 GW/cm2 intensity at the system input.
Fig. 16
Fig. 16 (a) and (b) The overall energy efficiency of the system for pulses of 500 fs duration and 5 GW/cm2 intensity but of different spectral bandwidths in case of perfect synchronization and when the seed is delayed respectively, (c) and (d) the duration of the resulting idler along the crystal for the cases (a) and (b) respectively, the non-collinear angle is 0.6°.
Fig. 17
Fig. 17 The spectra of idler pulse which is produced from 500 fs pulse of 5 GW/cm2 intensity at 0.6o non-collinear angle when (a) the input pulse is TL, L is the crystal length (b) the input pulse having 6.2 nm bandwidth.
Fig. 18
Fig. 18 The angular dispersion of the idler beam and the total intensity reduction in the focal plane as a function of the non-collinear angle for idler beam having 5 nm bandwidth, 500 fs duration and 3 mm beam diameter, I, Io the intensities in the focus spot for beams with and without angular respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

A 1 z + 1 v g 1 A 1 t = i 2 ω d e f f n 1 c A 1 * A 2 exp ( i Δ k z )
A 2 z + 1 v g 2 A 2 t = i 2 ω d e f f n 2 c A 1 2 exp ( i Δ k z )
L D = T o 2 | B 2 |
A 1 z + ( 1 v g 1 1 v g 2 ) A 1 τ = i 2 ω d e f f n 1 c A 1 * A 2 exp ( i Δ k z )
A 2 z = i 2 ω d e f f n 2 c A 1 2 exp ( i Δ k z )
A 1 j z + ( 1 v g 1 1 v g 2 ) A 1 j τ = k = 1 N i 2 ω d e f f n 1 c A 1 k * A 2 k j exp ( i Δ k k j z ) j = 1 , 2 , 3 , .. N
A 2 k j z = i 2 ω d e f f n 2 c A 1 k A 1 j exp ( i Δ k k j z ) j , k = 1 , 2 , 3 , .. N
A = [ j = 1 N A j A j * ] 1 / 2
A s j z + ( 1 v g s 1 v g p ) A s j τ = k = 1 N i ω s d e f f n s c A i k * j A p k exp ( i Δ k k j z ) j = 1 , 2 , 3 , .. N
A i k j z + ( 1 v g i 1 v g p ) A i k j τ = i ω i d e f f n i c A sj * A p k exp ( i Δ k k j z ) j , k = 1 , 2 , 3 , .. N
A p j z + A p j τ = k = 1 N i ω p d e f f n p c A s k A i k j exp ( i Δ k k j z ) j = 1 , 2 , 3 , .. N
L s = | 1 v g 1 1 v g 2 | 1 T
T = 4 ln 2 Δ ω ( 1 + ( 4 f ) 2 ) 1 / 2
M 2 ( t ) = { 0 | E r | 2 r d r 0 | E | 2 r 3 d r 1 4 | 0 r 2 [ E r E * E * r E ] d r | 2 } 1 / 2 0 | E | 2 r d r
M 2 = M 2 ( t ) P ( t ) d t P ( t ) d t
L m = 1 4 [ L N L 2 Δ k K ( γ ) + L N L 16 + L N L 2 Δ k 2 K ( γ ) ]
γ = ( L N L Δ k 4 + 1 + L N L 2 Δ k 2 16 ) 2
L N L = c 2 ω d e f f 2 ε o n ω 2 n 2 ω c I ω

Metrics