Abstract

Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP01 and LP1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Acousto-optic resonant coupling of three spatial modes in an optical fiber

Hee Su Park and Kwang Yong Song
Opt. Express 22(2) 1990-1996 (2014)

Acousto-optic interaction in polyimide coated optical fibers with flexural waves

E. P. Alcusa-Sáez, A. Díez, E. Rivera-Pérez, W. Margulis, L. Norin, and M. V. Andrés
Opt. Express 25(15) 17167-17173 (2017)

Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber

Sun Do Lim, Hyun Chul Park, In Kag Hwang, and Byoung Yoon Kim
Opt. Express 16(9) 6125-6133 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995).
    [Crossref] [PubMed]
  2. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [Crossref] [PubMed]
  3. T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
    [Crossref]
  4. A. Díez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [Crossref] [PubMed]
  5. M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
    [Crossref]
  6. E. P. Alcusa-Sáez, A. Díez, M. González-Herráez, and M. V. Andrés, “Improved time-resolved acousto-optic technique for optical fiber analysis of axial non-uniformities by using edge interrogation,” Opt. Express 23(6), 7345–7350 (2015).
    [Crossref] [PubMed]
  7. E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “Experimental analysis of distributed pump absorption and refractive index changes in Yb-doped fibers using acousto-optic interaction,” Opt. Lett. 40(5), 689–692 (2015).
    [Crossref] [PubMed]
  8. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  9. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  10. P. Hamel, Y. Jaouën, R. Gabet, and S. Ramachandran, “Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers,” Opt. Lett. 32(9), 1029–1031 (2007).
    [Crossref] [PubMed]
  11. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Phase-velocity measurements using prism output coupling for single- and few-mode optical fibers,” Opt. Lett. 11(2), 106–108 (1986).
    [Crossref] [PubMed]
  12. J. M. Savolainen, L. Grüner-Nielsen, P. Kristensen, and P. Balling, “Measurement of effective refractive-index differences in a few-mode fiber by axial fiber stretching,” Opt. Express 20(17), 18646–18651 (2012).
    [Crossref] [PubMed]
  13. C. Tsao, Optical Fibre Waveguide Analysis (Oxford, 1992).
  14. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
    [Crossref]
  15. D. L. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: an lnterlaboratory Comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
    [Crossref]

2015 (2)

2012 (1)

2011 (1)

2008 (1)

2007 (1)

2006 (1)

2000 (1)

1997 (1)

1996 (1)

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

1995 (1)

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[Crossref]

1986 (1)

1985 (1)

D. L. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: an lnterlaboratory Comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
[Crossref]

Alcusa-Sáez, E. P.

Andrés, M. V.

Balling, P.

Birks, T. A.

A. Díez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
[Crossref] [PubMed]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[Crossref]

Bolle, C. A.

Culverhouse, D. O.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Díez, A.

Engan, H. E.

Essiambre, R. J.

Franzen, D. L.

D. L. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: an lnterlaboratory Comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
[Crossref]

Gabet, R.

Ghalmi, S.

Gnauck, A. H.

González-Herráez, M.

Grüner-Nielsen, L.

Haakestad, M. W.

Hamel, P.

Jaouën, Y.

Kim, B. Y.

Kim, H. S.

Kristensen, P.

Kwang, I. K.

Lingle, R.

Mangan, B. J.

McCurdy, A.

Nicholson, J. W.

Östling, D.

Peckham, D. W.

Ramachandran, S.

Randel, S.

Reeves, W. H.

Russell, P. S.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Russell, P. St. J.

Ryf, R.

Savolainen, J. M.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[Crossref]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Phase-velocity measurements using prism output coupling for single- and few-mode optical fibers,” Opt. Lett. 11(2), 106–108 (1986).
[Crossref] [PubMed]

Sierra, A.

Sorin, W. V.

Winzer, P. J.

Yablon, A. D.

Yun, S. H.

J. Lightwave Technol. (4)

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[Crossref]

D. L. Franzen, “Determining the effective cutoff wavelength of single-mode fibers: an lnterlaboratory Comparison,” J. Lightwave Technol. 3(1), 128–134 (1985).
[Crossref]

M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Other (1)

C. Tsao, Optical Fibre Waveguide Analysis (Oxford, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Theoretical calculation of the LP01-LP11 modal effective index difference, Δn, for different step-index silica optical fibers. (a) Fibers with 1.28 μm cutoff wavelength, and different NA (indicated in the figure), and (b) fibers with NA = 0.12, and different cutoff wavelengths (indicated in the figure). In all cases, the cladding diameter was 125 μm.
Fig. 2
Fig. 2 (a) Experimental arrangement: BLS: broadband light source; MS: mode stripper; FUT: fiber under test; T: piezoelectric transducer. (b) Wavelength of the flexural elastic wave on the fiber as a function of its frequency. Dots are experimental measurements. Solid line is the theoretical calculation for the fundamental flexural elastic mode propagating in a 125 μm diameter silica optical fiber
Fig. 3
Fig. 3 (top) Resonance wavelength vs. frequency of the elastic wave, for different resonances. Dots are experimental data and solid line is a guide to the eye. (bottom) Modal indices difference vs. wavelength. Solid lines show the results obtained from the experiment. Dashed lines are theoretical calculations assuming a step-index profile. FUT: (a), (c) SMF-28e; (b), (d) SM2000.
Fig. 4
Fig. 4 (a) LP01-LP11 group index difference and (b) chromatic dispersion difference vs. wavelength. Solid lines are obtained from experimental measurements. Dashed line are theoretical calculations. Vertical dotted lines indicate the cut-off wavelength values obtained in section 4.1.
Fig. 5
Fig. 5 LP01-LP1m (m = 2 - 5) group index difference vs. wavelength. (a) Experimental result, and (b) theoretical calculations. FUT: SMF-28e.
Fig. 6
Fig. 6 Modal index difference vs. wavelength. (a) For wavelengths near cut-off and (b) for wavelengths well below cutoff. Inset shows a transmission spectrum. FUT: SM2000. Interaction length: 50 cm

Tables (1)

Tables Icon

Table 1 Nominal characteristics of the fibers and best-fit parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ R =ΔnΛ
Δ n g =Δnλ d dλ Δn ;    ΔD= λ c d 2 d λ 2 Δn

Metrics