Abstract

We demonstrate theoretically the trapping and manipulating of a gold nanoparticle dimer, using surface plasmon excited by a focused linearly-polarized laser beam on a silver film. We use both finite-difference time-domain force analysis and Maxwell stress tensor to show that the gold nanoparticle dimer can be trapped by a virtual probe pair. A formula is derived to represent the plasmonic field, suggesting that the gap between the two gold nanoparticles in the dimer can be controlled, for example, by tuning the excitation-laser wavelength. We further test our theory by successfully trapping nanoparticle dimers formed by nanospheres and nanorods. The controllable gap in between the nanoparticles can lead to tunable localized surface plasmon resonances, and this may find new exciting applications in plasmonic sensing or in lab-on-a-chip devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Vertically-oriented nanoparticle dimer based on focused plasmonic trapping

Zhe Shen, Lei Su, and Yao-chun Shen
Opt. Express 24(14) 16052-16065 (2016)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers

Anuj Dhawan, Stephen J. Norton, Michael D. Gerhold, and Tuan Vo-Dinh
Opt. Express 17(12) 9688-9703 (2009)

References

  • View by:
  • |
  • |
  • |

  1. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [Crossref] [PubMed]
  2. J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
    [Crossref] [PubMed]
  3. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [Crossref]
  4. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  5. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  6. W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
    [Crossref] [PubMed]
  7. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  8. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
    [Crossref] [PubMed]
  9. J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
    [Crossref] [PubMed]
  10. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
    [Crossref] [PubMed]
  11. V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
    [Crossref] [PubMed]
  12. R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
    [Crossref] [PubMed]
  13. J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
    [Crossref] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  15. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  16. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  17. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  18. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  19. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [Crossref] [PubMed]
  20. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  21. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
    [Crossref]
  22. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
    [Crossref] [PubMed]
  23. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  24. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  25. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  26. P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
    [Crossref] [PubMed]
  27. Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
    [Crossref] [PubMed]
  28. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  29. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  31. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [Crossref] [PubMed]
  32. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
    [Crossref] [PubMed]
  33. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  34. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  35. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  36. E. Wolf, “Electromagnetic diffraction in optical systems. 1. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [Crossref]
  37. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]
  38. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  39. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
    [Crossref]

2014 (3)

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

2013 (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

2012 (3)

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

2011 (2)

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (2)

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[Crossref] [PubMed]

2009 (4)

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

2008 (1)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

2007 (2)

2006 (4)

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

2005 (2)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

2004 (4)

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

1998 (1)

1994 (1)

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1959 (2)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems. 1. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

Aizpurua, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref] [PubMed]

Ashkin, A.

Atay, T.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Borisov, A. G.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Bouhelier, A.

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Bruyant, A.

Bryant, G. W.

Camargo, P. H.

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Chen, J. I.

J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[Crossref] [PubMed]

Chen, Y.

J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, H. Y.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Chu, S.

Colas des Francs, G.

Colli, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Dereux, A.

Djurisic, A. B.

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Dziedzic, J. M.

Eiden, A. L.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Elazar, J. M.

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Esteban, R.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Feng, B.

Ferrari, A. C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Freeman, R. G.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

García De Abajo, F. J.

Ginger, D. S.

J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[Crossref] [PubMed]

Girard, C.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guo, H.

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Henry, A. I.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Herrmann, L. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Huang, C.

Huang, F.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Huang, F. M.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Huang, L.

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Ignatovich, F.

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Keyser, U. F.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

Lee, P. T.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Lee, T. C.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Li, J.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, W.

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Li, Z. Y.

Liedl, T.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Lin, P. T.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Ling, L.

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Lombardo, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Lu, T. W.

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Lu, X.

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Mahajan, S.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Majewski, M. L.

Man, Z.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Mertens, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Milana, S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Min, C.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Natan, M. J.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Nordlander, P.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Novotny, L.

Nurmikko, A. V.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Rakic, A. D.

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Romero, I.

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Schatz, G. C.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Scherman, O. A.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Shen, J.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shi, W.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Sigle, D. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Song, J. H.

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Sun, Z.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Sundaram, R. S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Svoboda, K.

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Taylor, R. W.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Thacker, V. V.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Tserkezis, C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Urbach, H. P.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Wang, J.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Weeber, J. C.

Wiederrecht, G. P.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems. 1. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

Wustholz, K. L.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Xia, Y.

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, G.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhan, Q.

Zhang, T.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhu, S.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

ACS Nano (1)

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Anal. Bioanal. Chem. (1)

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the [E](4) enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

J. I. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132(28), 9600–9601 (2010).
[Crossref] [PubMed]

Lab Chip (1)

P. T. Lin, H. Y. Chu, T. W. Lu, and P. T. Lee, “Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers,” Lab Chip 14(24), 4647–4652 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photonics Rev. 2(1-2), 47–57 (2008).
[Crossref]

Nano Lett. (10)

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

W. Li, P. H. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5, 3448 (2014).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems. 1. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[Crossref]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The proposed plasmonic trapping system. The incident light is linearly-polarized and is focused to a 45nm-thick silver film through a 1.49- NA objective lens. Green-colored arrows indicate the polarization direction of the incident light (x direction). Red-colored field is the calculated surface plasmonic field, excited by the focused linearly-polarized beam. (b) Front view of the system in x-z plane, showing the plasmonic virtual-probe pair generated by interference. 2, m and 1 indicate different substrates, and are used as subscripts in following derivations and equations. The solid green lines indicate the incident light at an angle close to θ sp . Z0 represents the distance from the laser focus to the metal film. (c) Calculated transmission coefficients as a function of incident angles for s- and p-polarization for different electrical field components. ε 2 =1.33 , ε 1 = 1.515 2 , the thickness of sliver film d=45nm , the dielectric constant of Ag film is −11.76 + 0.37i at 532nm, and the water layer thickness is 3μm. (d) Top-view of the plasmonic field (showing the electrical-field distribution 10nm above the silver layer. z0 = 1μm and f 0 =1 [ f 0 is the filling factor and the identifier defined in Eq. (10)].
Fig. 2
Fig. 2 The force analysis for: a single 200nm-diameter gold nanosphere (a) placed on the left virtual probe, 0.1μm off the center and (b) placed 0.35μm off the center; (c) Two gold nanospheres (diameter 200nm), trapped by the plasmonic field; and (d) two gold nanorods (200nm long and 40nm in diameter). Green and yellow arrows show the force around the particle in X-Z plane. The white arrows show the total force. The schematic diagrams show the locations of particles in the plasmonic field.
Fig. 3
Fig. 3 Calculated forces on gold nanoparticles in the plasmonic field when: (a) the gold nanoparticle was placed above the trapping lobe and moved towards the Ag-film substrate (z = 0). Negative force means the force direction is in negative z; (b) the gold nanoparticle was placed on the Ag film and moved away from the center of virtual probe (x = 100nm) in x direction; and (c) the calculated force in x direction under the same condition as that in (b), and the negative force means the direction away from the center.
Fig. 4
Fig. 4 Calculated virtual-probe-pair spacing as a function of the incident light wavelength.
Fig. 5
Fig. 5 The calculated field enhancement in x-z plane, when: (a) no gold particles, (b) one gold nanosphere placed on the Ag film, (c) a gold nanosphere dimer placed on the gold film. (d) the nanosphere dimer was illuminated by a focused linearly polarized beam, the polarization direction in horizontal. Dashed circles are the gold nanospheres (Diameter: 200nm). The gap between the Ag film and the nanoparticle is 10nm. The spacing between two nanospheres in the dimer is 10nm. The dashed lines are the top and bottom of the Ag film (Thickness: 45nm).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

k sp = 2π λ 0 ε 2 ε m ε 2 + ε m
k r = 2π λ 0 ε 1 sin θ sp = k sp
{ T r p (θ)= ε 1 k z2 ε 2 k z1 (1+ r m2 p )(1+ r 1m p )exp(i k zm d) 1+ r m2 p r 1m p exp(2i k zm d) T φ s (θ)= (1+ r m2 s )(1+ r 1m s )exp(i k zm d) 1+ r m2 s r 1m s exp(2i k zm d) T z p (θ)= ε 1 ε 2 (1+ r m2 p )(1+ r 1m p )exp(i k zm d) 1+ r m2 p r 1m p exp(2i k zm d)
E t (x,y,z)= k x k y E ( k x , k y )exp[ i( k x x+ k y y± k z z ) ]d k x d k y
E t (x,y,z)= if e i k 1 f 2π k x , k y E t ( k x , k y ) 1 k z2 e i( k x x+ k y y+ k z z ) d k x d k y
E t = E inc ( k x , k y ) e i( k z1 k z2 ) z 0 [ t s k y 2 + t p k x 2 k z2 / k 2 t s k x k y + t p k x k y k z2 / k 2 0 t p ( k x 2 + k y 2 ) k x / k 2 ] k z2 k z1 k z1 / k 1 k x 2 + k y 2
E z = E inc ( k x , k y ) e i( k z1 k z2 ) z 0 t p k x k 2 k z2 k z1 k z1 / k 1
E t (ρ,φ,z)= if e i k 1 f 2π 0 θ max 0 2π E inc (θ,ϕ) e i( k z1 k z2 ) z 0 t p e i k 2 ρsinθcos(ϕφ) e iz k z2 k 2 2 k 1 sin 2 θ cosθ cosϕdθdφ
0 2π cosϕexp[i k 2 ρsinθcos(ϕφ)] =2πicosφ J 1 ( k 2 ρsinθ)
E t (ρ,φ,z)=cosφf e i k 1 f 0 θ max E inc (θ,ϕ) e i( k z1 k z2 ) z 0 t p J 1 ( k 2 ρsinθ) e i k z2 z k 2 2 k 1 sin 2 θ cosθ dθdφ
E inc (θ,ϕ)= E 0 e f 2 sin 2 θ/ ω 0 2 = E 0 e sin 2 θ/ f 0 2 sin 2 θ max = E 0 e n 1 2 sin 2 θ ( f 0 NA) 2
E t (ρ,φ,z)=cosφf e i k 1 f 0 θ max E 0 e n 1 2 sin 2 θ ( f 0 NA) 2 e i( k z1 k z2 ) z 0 t p J 1 ( k 2 ρsinθ) e i k z2 z k 2 2 k 1 sin 2 θ cosθ dθ
f =ρ E + J × B
f =ε[(· E ) E E ×(× E )]+ 1 μ [(· B ) B B ×(× B )]ε ( E × B ) t
f =[ε( E E ) ε 2 I E 2 + 1 μ ( B B ) 1 2μ I B 2 ]ε ( E × B ) t
f =· T ε ( E × B ) t =· T εμ S t
F = v f ·dv= v · T dvεμ v S t dv
F = s T · n dsεμ t v S dv
F = s T · n ds

Metrics