Abstract

We present a comprehensive study of uni-travelling carrier photodiode impedance and frequency photo-response supported by measurements up to 110 GHz. The results of this investigation provide valuable new information for the optimisation of the coupling efficiency between UTC-PDs and THz antennas. We show that the measured impedance cannot be explained employing the standard junction-capacitance/series-resistance concept and propose a new model for the observed effects, which exhibits good agreement with the experimental data. The achieved knowledge of the photodiode impedance will allow the absolute level of power emitted by antenna integrated UTCs to be predicted and ultimately maximised.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes

Michele Natrella, Chin-Pang Liu, Chris Graham, Frederic van Dijk, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 24(11) 11793-11807 (2016)

Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model

Jin Li, Bing Xiong, Changzheng Sun, Di Miao, and Yi Luo
Opt. Express 23(17) 21615-21623 (2015)

Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation

Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds
Opt. Express 18(11) 11105-11110 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
    [Crossref]
  2. C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2007), paper 1705–1708.
  3. A. J. Seeds, M. J. Fice, K. Balakier, M. Natrella, O. Mitrofanov, M. Lamponi, M. Chtioui, F. van Dijk, M. Pepper, G. Aeppli, A. G. Davies, P. Dean, E. Linfield, and C. C. Renaud, “Coherent terahertz photonics,” Opt. Express 21(19), 22988–23000 (2013).
    [Crossref] [PubMed]
  4. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
    [Crossref]
  5. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
    [Crossref]
  6. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
    [Crossref]
  7. A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” in IEEE Photonic Soc.24th Annual Meeting (IEEE, 2011), pp. 19–20.
  8. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
    [Crossref]
  9. C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” in Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. (2007), pp. 782–783.
    [Crossref]
  10. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).
  11. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
    [Crossref]
  12. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
    [Crossref]
  13. H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
    [Crossref]
  14. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
    [Crossref]
  15. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
    [Crossref]
  16. J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7(2), 181–187 (1959).
    [Crossref]
  17. R. DuHamel and D. Isbell, “Broadband logarithmically periodic antenna structures,” IRE Int. Conv. Rec. 5, 119–128 (1957).
    [Crossref]
  18. J. D. Kraus, R. J. Marhefka, and A. S. Khan, Antennas for All Applications, 3rd ed. (Tata McGraw-Hill, 2010).
  19. J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
    [Crossref] [PubMed]
  20. E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-speed uni-travelling carrier photodiodes for InP photonic integrated circuits,” Opt. Express 20, 9172–9177 (2012).
    [Crossref] [PubMed]
  21. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
    [Crossref] [PubMed]
  22. M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
    [Crossref] [PubMed]
  23. A. J. Seeds, C. Renaud, and M. Robertson, “Photodetector including multiple waveguides,” United States patent US7851782 (B2) (2010).
  24. G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
    [Crossref]
  25. R. P. Riesz, “High speed semiconductor photodiodes,” Rev. Sci. Instrum. 33(9), 994–998 (1962).
    [Crossref]
  26. H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE 70(1), 13–25 (1982).
    [Crossref]
  27. H. Kroemer, “Heterostructure bipolar transistors: What should we build,” J. Vac. Sci. Technol. B 1, 126–130 (1983).
  28. R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid-State Electron. 5(5), 341–351 (1962).
    [Crossref]
  29. A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
    [Crossref]
  30. V. Ryzhii and M. Shur, “Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors,” Semicond. Sci. Technol. 17(11), 1168–1171 (2002).
    [Crossref]
  31. A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.
  32. A. J. Lord, “Comparing the accuracy and repeatability of on-wafer calibration techniques to 110GHz,” in 29th Eur. Microwave Conf. (1999), 28–31.
    [Crossref]
  33. K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
    [Crossref]
  34. T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
    [Crossref]
  35. T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).
  36. R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
    [Crossref]

2015 (1)

2014 (1)

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

2013 (1)

2012 (4)

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-speed uni-travelling carrier photodiodes for InP photonic integrated circuits,” Opt. Express 20, 9172–9177 (2012).
[Crossref] [PubMed]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

2006 (1)

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

2005 (1)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

2003 (1)

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

2002 (1)

V. Ryzhii and M. Shur, “Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors,” Semicond. Sci. Technol. 17(11), 1168–1171 (2002).
[Crossref]

2001 (1)

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

2000 (1)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

1998 (1)

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

1997 (2)

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

1994 (1)

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

1984 (1)

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

1983 (1)

H. Kroemer, “Heterostructure bipolar transistors: What should we build,” J. Vac. Sci. Technol. B 1, 126–130 (1983).

1982 (1)

H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE 70(1), 13–25 (1982).
[Crossref]

1963 (1)

G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
[Crossref]

1962 (2)

R. P. Riesz, “High speed semiconductor photodiodes,” Rev. Sci. Instrum. 33(9), 994–998 (1962).
[Crossref]

R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid-State Electron. 5(5), 341–351 (1962).
[Crossref]

1959 (1)

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7(2), 181–187 (1959).
[Crossref]

1957 (1)

R. DuHamel and D. Isbell, “Broadband logarithmically periodic antenna structures,” IRE Int. Conv. Rec. 5, 119–128 (1957).
[Crossref]

Aeppli, G.

Ahrenkiel, R. K.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

Ajito, K.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Anderson, R. L.

R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid-State Electron. 5(5), 341–351 (1962).
[Crossref]

Balakier, K.

Cannard, P.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Carpintero, G.

Celi, D.

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

Chtioui, M.

Davies, A. G.

Dean, P.

Derrier, N.

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

DuHamel, R.

R. DuHamel and D. Isbell, “Broadband logarithmically periodic antenna structures,” IRE Int. Conv. Rec. 5, 119–128 (1957).
[Crossref]

Dyson, J.

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7(2), 181–187 (1959).
[Crossref]

Eisele, H.

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
[Crossref]

Ellingson, R.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

Emmons, R. B.

G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
[Crossref]

Fice, M.

Fice, M. J.

Firth, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Fischer, R. J.

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

Furuta, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

Grinberg, A. A.

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

Hirata, A.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

Hirota, Y.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

Isbell, D.

R. DuHamel and D. Isbell, “Broadband logarithmically periodic antenna structures,” IRE Int. Conv. Rec. 5, 119–128 (1957).
[Crossref]

Ishibashi, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

Ito, H.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

Johnston, S.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

Kobayashi, T.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).

Kroemer, H.

H. Kroemer, “Heterostructure bipolar transistors: What should we build,” J. Vac. Sci. Technol. B 1, 126–130 (1983).

H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE 70(1), 13–25 (1982).
[Crossref]

Kukutsu, N.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Kurishima, K.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

Lamponi, M.

Lasser, M. E.

G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
[Crossref]

Li, J.

Linfield, E.

Liu, C.-P.

Liu, H.

Lord, A. J.

A. J. Lord, “Comparing the accuracy and repeatability of on-wafer calibration techniques to 110GHz,” in 29th Eur. Microwave Conf. (1999), 28–31.
[Crossref]

Lucovsky, G.

G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
[Crossref]

Luo, Y.

Matsuoka, Y.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

Miao, D.

Minotani, T.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

Mitrofanov, O.

Moodie, D.

C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” in Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. (2007), pp. 782–783.
[Crossref]

Moodie, D. G.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
[Crossref] [PubMed]

Moore, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Morkoc, H.

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Nagatsuma, T.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

Nakajima, F.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

Nakajima, H.

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

Natrella, M.

Pepper, M.

Renaud, C.

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-speed uni-travelling carrier photodiodes for InP photonic integrated circuits,” Opt. Express 20, 9172–9177 (2012).
[Crossref] [PubMed]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Renaud, C. C.

Riesz, R. P.

R. P. Riesz, “High speed semiconductor photodiodes,” Rev. Sci. Instrum. 33(9), 994–998 (1962).
[Crossref]

Robertson, M.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” in Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. (2007), pp. 782–783.
[Crossref]

Robertson, M. J.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010).
[Crossref] [PubMed]

Rogers, D.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Rouvalis, E.

Rumiantsev, A.

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

Ryzhii, V.

V. Ryzhii and M. Shur, “Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors,” Semicond. Sci. Technol. 17(11), 1168–1171 (2002).
[Crossref]

Sakalas, P.

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

Sasaki, A.

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

Schroter, M.

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

Seeds, A.

E. Rouvalis, M. Chtioui, M. Tran, F. van Dijk, M. Fice, C. Renaud, G. Carpintero, and A. Seeds, “High-speed uni-travelling carrier photodiodes for InP photonic integrated circuits,” Opt. Express 20, 9172–9177 (2012).
[Crossref] [PubMed]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Seeds, A. J.

Shimizu, N.

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).

Shur, M.

V. Ryzhii and M. Shur, “Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors,” Semicond. Sci. Technol. 17(11), 1168–1171 (2002).
[Crossref]

Shur, M. S.

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

Song, H. J.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Sun, C.

Tran, M.

van Dijk, F.

Wakatsuki, A.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Wanlass, M.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

Xiong, B.

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

Appl. Phys. Lett. (1)

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[Crossref]

Electron. Lett. (2)

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46(26), S8–S11 (2010).
[Crossref]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

IEEE Proc. Optoelectron. (1)

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” IEEE Proc. Optoelectron. 150, 138–142 (2003).

IEEE Trans. Electron Dev. (2)

A. A. Grinberg, M. S. Shur, R. J. Fischer, and H. Morkoc, “An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 31(12), 1758–1765 (1984).
[Crossref]

K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Dev. 41(8), 1319–1326 (1994).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

IRE Int. Conv. Rec. (1)

R. DuHamel and D. Isbell, “Broadband logarithmically periodic antenna structures,” IRE Int. Conv. Rec. 5, 119–128 (1957).
[Crossref]

IRE Trans. Antennas Propag. (1)

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7(2), 181–187 (1959).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Kroemer, “Heterostructure bipolar transistors: What should we build,” J. Vac. Sci. Technol. B 1, 126–130 (1983).

Jpn. J. Appl. Phys. (1)

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1-2), 123–137 (2009).
[Crossref]

Opt. Express (5)

Proc. IEEE (2)

H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE 70(1), 13–25 (1982).
[Crossref]

G. Lucovsky, M. E. Lasser, and R. B. Emmons, “Coherent Light Detection in Solid-State Photodiodes,” Proc. IEEE 51(1), 166–172 (1963).
[Crossref]

Proc. SPIE (2)

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

R. P. Riesz, “High speed semiconductor photodiodes,” Rev. Sci. Instrum. 33(9), 994–998 (1962).
[Crossref]

Semicond. Sci. Technol. (2)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
[Crossref]

V. Ryzhii and M. Shur, “Tunnelling- and barrier-injection transit-time mechanisms of terahertz plasma instability in high-electron mobility transistors,” Semicond. Sci. Technol. 17(11), 1168–1171 (2002).
[Crossref]

Solid-State Electron. (1)

R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid-State Electron. 5(5), 341–351 (1962).
[Crossref]

Tech. Dig. Ultrafast Electron. Optoelectron. (1)

T. Ishibashi, N. Shimizu, and S. Kodama, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron. 13, 83–87 (1997).

Other (7)

A. Rumiantsev, P. Sakalas, N. Derrier, D. Celi, and M. Schroter, “Influence of probe tip calibration on measurement accuracy of small-signal parameters of advanced BiCMOS HBTs,” in 2011 IEEE Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (IEEE, 2011), pp. 203–206.

A. J. Lord, “Comparing the accuracy and repeatability of on-wafer calibration techniques to 110GHz,” in 29th Eur. Microwave Conf. (1999), 28–31.
[Crossref]

C. Mann, “Practical challenges for the commercialisation of terahertz electronics,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2007), paper 1705–1708.

A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” in IEEE Photonic Soc.24th Annual Meeting (IEEE, 2011), pp. 19–20.

C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High output power at 110 GHz with a waveguide Uni-travelling carrier photodiode,” in Conf. Proc. - Lasers Electro-Optics Soc. Annu. Meet. (2007), pp. 782–783.
[Crossref]

J. D. Kraus, R. J. Marhefka, and A. S. Khan, Antennas for All Applications, 3rd ed. (Tata McGraw-Hill, 2010).

A. J. Seeds, C. Renaud, and M. Robertson, “Photodetector including multiple waveguides,” United States patent US7851782 (B2) (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Measured S11 magnitude (dB) and phase (degrees), relative to the PNA 50 Ω impedance.
Fig. 2
Fig. 2 Measured UTC impedance real part (resistance) and imaginary part (reactance).
Fig. 3
Fig. 3 UTC capacitance derived from the measured device reactance.
Fig. 4
Fig. 4 (a) Simplified circuit model for a photodetector. (b) Simplified circuit model including the large resistance RP across the depletion layer and also the parasitic capacitance CP and inductance LP.
Fig. 5
Fig. 5 Comparison between S11/impedance measured for the 3 x 15 µm2 UTC at zero bias and calculated with the circuit in Fig. 4(b), as the depletion capacitance C ranges from 2 fF to 108 fF. The parasitic capacitance Cp and inductance Lp are here neglected, the resistance Rp across the depletion layer is taken into account with a value of 300 kΩ. The resistance R is set to 15 Ω, which is the device series resistance.
Fig. 6
Fig. 6 Comparison between measured S11/impedance of a 3 x 15 µm2 area UTC and S11/impedance obtained from the simplified equivalent circuit for two different values of device capacitance.
Fig. 7
Fig. 7 Example of a one-pole-one-zero function, such as the S11 of Circuit 1 and 2, fitting the measured S11 magnitude within the low frequency range (i.e. 0 GH to 25 GHz). In order to have the pole and the zero located in this way, an unrealistically large capacitance C = 550 fF and an unlikely small resistance R = 3 Ω have to be employed.
Fig. 8
Fig. 8 (a) UTC layer structure. (b) New equivalent circuit, showing the relation with the UTC structure. The two spacers have been modelled as two RC parallel circuits (R2C2 and R3C3). The neutral region of the heavily p-doped 120 nm thick absorber only provides a negligible resistive contribution. The R4C4 parallel represents the carrier collection layer, while R1 takes into account the resistive effects of doped materials and ohmic contacts. Cp and Lp account for parasitic capacitance and inductance respectively.
Fig. 9
Fig. 9 Comparison between measured S11/impedance of a 3 x 15 µm2 area UTC at 0 V bias (dashed blue line), and S11/impedance obtained from Circuit 3 which models the proposed effect of spacer layers and conduction band discontinuities (dotted red line).
Fig. 10
Fig. 10 Comparison between measured S11/impedance of a 4 x 15 µm2 area UTC at 0 V bias (dashed blue line), and S11/impedance obtained from Circuit 3 (dotted red line). The optimum resistance and capacitance values are obtained by scaling the optimum values found for the 3 x 15 µm2 area UTC at 0 V.
Fig. 11
Fig. 11 Comparison between measured S11/impedance of a 3 x 15 µm2 area UTC at 2 V reverse bias (dashed blue line), and S11/impedance obtained from Circuit 3 (dotted red line). The capacitances C2, C3 and C4, associated with the spacers and the depletion layer, have been adjusted, while all the resistances are unchanged with respect to the 0 V bias case.
Fig. 12
Fig. 12 Comparison between measured S11/impedance of a 4 x 15 µm2 area UTC at 2 V reverse bias (dashed blue line), and S11/impedance obtained from Circuit 3 (dotted red line). The optimum resistance and capacitance values are obtained by scaling the optimum values found for the 3 x 15 µm2 area UTC at 2 V reverse.
Fig. 13
Fig. 13 Transit-time limited response of a UTC with a 120 nm thick InGaAs absorber and a 300 nm thick InP collection layer. The continuous red line represents the decrease due only to the transfer function through the collector. The dotted blue line is the transit-time limited response when no quasi-field is present. The dashed green lines 1, 2 and 3 represent the transit-time limited responses with the contribution of the estimated potential (between 10 mV and 20 mV) generated by the doping grading.
Fig. 14
Fig. 14 Overall frequency response of the 3 x 15 µm2 UTCs, for the diffusion only scenario (dotted blue line) and the three different quasi-field scenarios (dashed green lines) depicted in Fig. 13, compared with the measured response (continuous black line).
Fig. 15
Fig. 15 Overall frequency response of the 4 x 15 µm2 UTCs, for the diffusion only scenario (dotted blue line) and the three different quasi-field scenarios (dashed green lines) depicted in Fig. 13, compared with the measured response (continuous black line).

Tables (2)

Tables Icon

Table 1 Layer structure of the UTCs provided by III-V Lab [20].

Tables Icon

Table 2 Summary of the parameters employed to calculate the responses in Fig. 13.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C TOT = 1 4 π 2 f 2 R p 2 C +C
S 11 (s)= (R R 0 )( s+ R+ R p R 0 (R R 0 ) R p C ) (R+ R 0 )( s+ R+ R p + R 0 (R+ R 0 ) R p C ) .
s pole = R+ R p + R 0 (R+ R 0 ) R p C
s zero = R+ R p R 0 (R R 0 ) R p C
Z J = R 2 1+j2πf R 2 C 2 + R 3 1+j2πf R 3 C 3 + R 4 1+j2πf R 4 C 4
I L = I PH Z J ( Z J + R 1 )(14 π 2 f 2 L p C p +j2πf R L C p )+j2πf L P + R L

Metrics