Abstract

Portable display devices, such as intelligent telephones and panel PCs, have become parts of modern people’s daily life. Their mainstream display interfaces are based on two-dimensional (2D) images. Although some three-dimensional (3D) technologies have been proposed for portable devices, comfortable visual effects are untouched until now. A super multi-view (SMV) system with comfortable 3D effects, constructed by a group of OLED microdisplay/projecting lens pairs, is proposed in this paper. Through gating different segments of each projecting lens sequentially and refreshing the virtual image of the corresponding microdisplay synchronously, the proposed SMV system greatly decreases the demand on the number of employed microdisplays and at the same time takes a thin optical structure, endowing great potential for portable devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays

Dongdong Teng, Zhiyong Pang, Yueli Zhang, Dong Wu, Jiahui Wang, Lilin Liu, and Biao Wang
Opt. Express 23(17) 21549-21564 (2015)

Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Markman, J. Wang, and B. Javidi, “Three-dimensional integral imaging displays using a quick-response encoded elemental image arrray,” Optica 1(5), 332–335 (2014).
    [Crossref]
  2. D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
    [Crossref]
  3. Y. Kim, J. Kim, Y. Kim, H. Choi, J. H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47(27), 4927–4934 (2008).
    [Crossref] [PubMed]
  4. C. C. Ji, C. G. Luo, H. Deng, D. H. Li, and Q. H. Wang, “Tilted elemental image array generation method for moiré-reduced computer generated integral imaging display,” Opt. Express 21(17), 19816–19824 (2013).
    [Crossref] [PubMed]
  5. Y. S. Hwang, F. K. Bruder, T. Fäcke, S. C. Kim, G. Walze, R. Hagen, and E. S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
    [Crossref] [PubMed]
  6. G. Wang, Y. Huang, T. Chang, and T. Chen, “Bare fringer 3D air-touch system using an embedded optical sensor array for mobile displays,” J. Display Technol. 10(1), 13–18 (2014).
    [Crossref]
  7. C. G. Luo, X. Xiao, M. Martínez-Corral, C. W. Chen, B. Javidi, and Q. H. Wang, “Analysis of the depth of field of integral imaging displays based on wave optics,” Opt. Express 21(25), 31263–31273 (2013).
    [Crossref] [PubMed]
  8. W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
    [Crossref]
  9. D. Teng, Y. Xiong, L. Liu, and B. Wang, “Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays,” Opt. Express 23(5), 6007–6019 (2015).
    [Crossref] [PubMed]
  10. Z. L. Xiong, Q. H. Wang, S. L. Li, H. Deng, and C. C. Ji, “Partially-overlapped viewing zone based integral imaging system with super wide viewing angle,” Opt. Express 22(19), 22268–22277 (2014).
    [Crossref] [PubMed]
  11. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  12. Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
    [Crossref]
  13. Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
    [Crossref]
  14. D. Teng, Z. Pang, Y. Zhang, D. Wu, J. Wang, L. Liu, and B. Wang, “Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays,” Opt. Express 23(17), 21549–21564 (2015).
    [Crossref] [PubMed]

2015 (3)

2014 (4)

2013 (3)

2010 (1)

W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
[Crossref]

2008 (1)

2005 (1)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

2003 (1)

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Aksit, K.

D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
[Crossref]

Bruder, F. K.

Chang, T.

Chen, C. W.

Chen, T.

Choi, H.

Deng, H.

Fäcke, T.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hagen, R.

Huang, Y.

G. Wang, Y. Huang, T. Chang, and T. Chen, “Bare fringer 3D air-touch system using an embedded optical sensor array for mobile displays,” J. Display Technol. 10(1), 13–18 (2014).
[Crossref]

W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
[Crossref]

Hwang, Y. S.

Javidi, B.

Ji, C. C.

Jung, J. H.

Kade, D.

D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
[Crossref]

Kim, E. S.

Kim, J.

Kim, S. C.

Kim, Y.

Lee, B.

Li, D. H.

Li, S. L.

Liu, L.

Luo, C. G.

Markman, A.

Martínez-Corral, M.

Mphepö, W.

W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
[Crossref]

Nakanuma, H.

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Özcan, O.

D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
[Crossref]

Pang, Z.

Shieh, H. D.

W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
[Crossref]

Takaki, Y.

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Teng, D.

Ürey, K.

D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
[Crossref]

Walze, G.

Wang, B.

Wang, G.

Wang, J.

Wang, Q. H.

Wu, D.

Xiao, X.

Xiong, Y.

Xiong, Z. L.

Zhang, Y.

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Display Technol. (1)

J. Display. Technol. (1)

W. Mphepö, Y. Huang, and H. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display. Technol. 6(2), 60–64 (2010).
[Crossref]

Opt. Express (6)

Optica (1)

Pers. Ubiquitous Comput. (1)

D. Kade, K. Akşit, K. Ürey, and O. Özcan, “Head-mounted mixed reality projection display for games production and entertainment,” Pers. Ubiquitous Comput. 19(3-4), 509–521 (2015).
[Crossref]

Proc. SPIE (2)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 An elementary projecting unit of the proposed SMV system.
Fig. 2
Fig. 2 Optical arrangements of the proposed SMV system. Two elementary projecting units are drawn here to demonstrate the proposed ideas.
Fig. 3
Fig. 3 Photograph of the experimental display system.
Fig. 4
Fig. 4 Captured images of an apple with a horizontal interval of 30mm on the observation plane when the proposed display system works.
Fig. 5
Fig. 5 The magnified leaves of the captured images in Fig. 4 for demonstrating changes more clearly.
Fig. 6
Fig. 6 Geometrical diagram showing the displayed spot sizes of the 2D display planes in the 3D display space.
Fig. 7
Fig. 7 Captured image with two locally enlarged images at different depths.
Fig. 8
Fig. 8 The changed distance between the observation plane and the prototype system along with the varied value of M′/M.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L / ( L + v ) = ( Δ D / M ) / ( β d x / M ) L = Δ D v / ( β d x Δ D )
Δ d = ( β d x / M ) ( L / v ) = ( β d x Δ D ) / ( M ( β d x Δ D ) )
W = ( N 1 ) M Δ d = ( N 1 ) β d x Δ D / ( β d x Δ D )
β δ n = δ n + n Δ D δ n = n Δ D / ( β 1 )
A x = 2 ( δ n + Δ D / 2 )
{ ε 1 = Δ z ( Δ D / M + ε d ) + 2 ε d v 2 v ε 2 = Δ z ( Δ D / M ε d ) + 2 ε d v 2 v
L / ( L + v ) = ( Δ D / M ) / ( β d x / M ' ) L = ( M ' / M ) Δ D v / ( β d x ( M ' / M ) Δ D )

Metrics