Abstract

A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OCDMA PON supporting ONU inter-networking based on gain-switched Fabry–Pérot lasers with external dual-wavelength injection

Jie Liu, Duoduo Zeng, Changjian Guo, Lei Xu, and Sailing He
Opt. Express 18(22) 22982-22987 (2010)

Computationally Efficient Monitoring of PON Fiber Link Quality Using Periodic Coding

Mohammad M. Rad, Habib A. Fathallah, Sophie LaRochelle, and Leslie A. Rusch
J. Opt. Commun. Netw. 3(1) 77-86 (2011)

Signaling Free Localization of Link and Node Failures in an Optical Mesh-Tree Network

Xiao Li, Wei Ji, Shicheng Zhang, and Kangrui Huang
J. Opt. Commun. Netw. 8(4) 263-271 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Batagelj, “FTTH networks deployment in Slovenia,” in ICTON (2009), paper Mo.D4.1.
  2. R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
    [Crossref]
  3. P. Liu and Z. H. Peng, “China’s Smart City Pilots: A Progress Report,” Computer 47(10), 72–81 (2014).
    [Crossref]
  4. D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fiber with individually assigned Brillouin frequency shifs for monitoring passive optical network,” J. Lightwave Technol. 25(5), 1290–1297 (2007).
    [Crossref]
  5. M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
    [Crossref]
  6. A. Champavère, “New OTDR Measurement and Monitoring Techniques,” in OFC (IEEE, 2014), paper W3D.1.
  7. H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
    [Crossref]
  8. M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett. 15(6), 677–679 (2011).
    [Crossref]
  9. X. Zhou, F. D. Zhang, and X. H. Sun, “Centralized PON monitoring scheme based on optical coding,” IEEE Photonics Technol. Lett. 25(9), 795–797 (2013).
    [Crossref]
  10. K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.
  11. X. Zhang, F. J. Lu, M. Zhu, and X. H. Sun, “Remote coding for PON monitoring system using waveguide Bragg grating based PLC splitter chip,” ICOCN 2015.
  12. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
    [Crossref] [PubMed]
  13. H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
    [Crossref]
  14. H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4(2), 310–316 (2012).
    [Crossref]
  15. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
    [Crossref] [PubMed]
  16. A. Himeno, K. Kato, and T. Miya, “Silica-Based Planar Lightwave Circuits,” J. Lightwave Technol. 4(6), 913–924 (1998).
  17. S. Pal and B. R. Singh, “Analysis and Design of Corrugated Long-Period Gratings in Silica-on-Silicon Planar Waveguides,” J. Lightwave Technol. 25(8), 2260–2267 (2007).
    [Crossref]
  18. Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
    [Crossref]
  19. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
    [Crossref]
  20. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  21. D. Derickson, Fiber Optic Test and Measurements (Prentice Hall, 1998).
  22. M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
    [Crossref]
  23. M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
    [Crossref]
  24. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007).
    [Crossref]
  25. M. Meenakshi and I. Andonovic, “Effect of physical layer impairments on SUM and AND detection strategies for 2-D optical OCDMA,” IEEE Photon. Technol. Lett. 17(5), 1112–1114 (2005).
    [Crossref]

2014 (1)

P. Liu and Z. H. Peng, “China’s Smart City Pilots: A Progress Report,” Computer 47(10), 72–81 (2014).
[Crossref]

2013 (2)

2012 (1)

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4(2), 310–316 (2012).
[Crossref]

2011 (1)

M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett. 15(6), 677–679 (2011).
[Crossref]

2010 (4)

M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

2009 (1)

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

2008 (1)

H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
[Crossref]

2007 (3)

2005 (1)

M. Meenakshi and I. Andonovic, “Effect of physical layer impairments on SUM and AND detection strategies for 2-D optical OCDMA,” IEEE Photon. Technol. Lett. 17(5), 1112–1114 (2005).
[Crossref]

2003 (1)

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[Crossref]

1998 (1)

A. Himeno, K. Kato, and T. Miya, “Silica-Based Planar Lightwave Circuits,” J. Lightwave Technol. 4(6), 913–924 (1998).

1995 (1)

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

1994 (1)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

Ambran, S.

Andonovic, I.

M. Meenakshi and I. Andonovic, “Effect of physical layer impairments on SUM and AND detection strategies for 2-D optical OCDMA,” IEEE Photon. Technol. Lett. 17(5), 1112–1114 (2005).
[Crossref]

Bang, H.

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Batagelj, B.

B. Batagelj, “FTTH networks deployment in Slovenia,” in ICTON (2009), paper Mo.D4.1.

Bellec, M.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Bjarklev, A.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

Campbell, J. C.

Cardenas, D.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Charbonnier, B.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Esmail, M. A.

M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett. 15(6), 677–679 (2011).
[Crossref]

Evanno, N.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Fathallah, H.

M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett. 15(6), 677–679 (2011).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
[Crossref]

H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
[Crossref]

Gates, J. C.

Gaudino, R.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Guignard, P.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Hanawa, F.

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Hann, S.

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Hibino, Y.

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-Based Planar Lightwave Circuits,” J. Lightwave Technol. 4(6), 913–924 (1998).

Holmes, C.

Honda, N.

Iida, D.

Ishii, M.

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Ito, F.

Izumita, H.

Jager, D.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-Based Planar Lightwave Circuits,” J. Lightwave Technol. 4(6), 913–924 (1998).

Liu, P.

P. Liu and Z. H. Peng, “China’s Smart City Pilots: A Progress Report,” Computer 47(10), 72–81 (2014).
[Crossref]

Meenakshi, M.

M. Meenakshi and I. Andonovic, “Effect of physical layer impairments on SUM and AND detection strategies for 2-D optical OCDMA,” IEEE Photon. Technol. Lett. 17(5), 1112–1114 (2005).
[Crossref]

Megret, P.

K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.

Mennea, P. L.

Meyer, S.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Miya, T.

A. Himeno, K. Kato, and T. Miya, “Silica-Based Planar Lightwave Circuits,” J. Lightwave Technol. 4(6), 913–924 (1998).

Moeyaert, V.

K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.

Mollers, I.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Nakagome, H.

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Pal, S.

Park, C.

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Peng, Z. H.

P. Liu and Z. H. Peng, “China’s Smart City Pilots: A Progress Report,” Computer 47(10), 72–81 (2014).
[Crossref]

Pizzinat, A.

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

Poulsen, C. V.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

Poulsen, O.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

Rad, M. M.

M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
[Crossref]

H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
[Crossref]

Rogers, H. L.

Rusch, L. A.

M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
[Crossref]

H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
[Crossref]

Shim, K.

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Sima, C.

Singh, B. R.

Smith, P. G. R.

Sun, X. H.

X. Zhou, F. D. Zhang, and X. H. Sun, “Centralized PON monitoring scheme based on optical coding,” IEEE Photonics Technol. Lett. 25(9), 795–797 (2013).
[Crossref]

Svalgaard, M.

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

Takahashi, H.

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[Crossref]

Takato, N.

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Y. Hibino, F. Hanawa, H. Nakagome, N. Takato, M. Ishii, and N. Takato, “High reliability optical spltter composed of Silica-based Planar Lightwave circuits,” J. Lightwave Technol. 13(8), 640–642 (1995).
[Crossref]

Thollabandi, M.

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Wuipart, M.

K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.

Yuksel, K.

K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.

Zervas, M. N.

Zhang, F. D.

X. Zhou, F. D. Zhang, and X. H. Sun, “Centralized PON monitoring scheme based on optical coding,” IEEE Photonics Technol. Lett. 25(9), 795–797 (2013).
[Crossref]

Zhou, X.

X. Zhou, F. D. Zhang, and X. H. Sun, “Centralized PON monitoring scheme based on optical coding,” IEEE Photonics Technol. Lett. 25(9), 795–797 (2013).
[Crossref]

Computer (1)

P. Liu and Z. H. Peng, “China’s Smart City Pilots: A Progress Report,” Computer 47(10), 72–81 (2014).
[Crossref]

Electron. Lett. (1)

M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994).
[Crossref]

IEEE Commun. Lett. (1)

M. A. Esmail and H. Fathallah, “Novel coding for PON fault identification,” IEEE Commun. Lett. 15(6), 677–679 (2011).
[Crossref]

IEEE Commun. Mag. (1)

R. Gaudino, D. Cardenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Mollers, and D. Jager, “Perspective in next-generation home networks: Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Meenakshi and I. Andonovic, “Effect of physical layer impairments on SUM and AND detection strategies for 2-D optical OCDMA,” IEEE Photon. Technol. Lett. 17(5), 1112–1114 (2005).
[Crossref]

IEEE Photonics J. (1)

H. L. Rogers, C. Holmes, J. C. Gates, and P. G. R. Smith, “Analysis of dispersion characteristics of planar waveguides via multi-order interrogation of integrated Bragg gratings,” IEEE Photonics J. 4(2), 310–316 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Fathallah, M. M. Rad, and L. A. Rusch, “PON monitoring: Periodic encoders with low capital and operational cost,” IEEE Photonics Technol. Lett. 20(24), 2039–2041 (2008).
[Crossref]

X. Zhou, F. D. Zhang, and X. H. Sun, “Centralized PON monitoring scheme based on optical coding,” IEEE Photonics Technol. Lett. 25(9), 795–797 (2013).
[Crossref]

IEEE Trans. Commun. (2)

M. M. Rad, H. Fathallah, and L. A. Rusch, “Fiber fault PON monitoring using optical coding: effects of customer geographic distribution,” IEEE Trans. Commun. 58(4), 1172–1181 (2010).
[Crossref]

M. M. Rad, H. Fathallah, and L. A. Rusch, “Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability,” IEEE Trans. Commun. 58(4), 1182–1192 (2010).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (1)

Opt. Fiber Technol. (1)

M. Thollabandi, H. Bang, K. Shim, S. Hann, and C. Park, “An optical surveillance technique based on cavity mode analysis of SL-RSOA for GPON,” Opt. Fiber Technol. 15(5–6), 451–455 (2009).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003).
[Crossref]

Other (6)

P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

D. Derickson, Fiber Optic Test and Measurements (Prentice Hall, 1998).

A. Champavère, “New OTDR Measurement and Monitoring Techniques,” in OFC (IEEE, 2014), paper W3D.1.

K. Yuksel, V. Moeyaert, M. Wuipart, and P. Megret, “Optical layer monitoring in passive optical networks (PONs): A Review,” in ICTON (2008), paper Tu.B1.1.

X. Zhang, F. J. Lu, M. Zhu, and X. H. Sun, “Remote coding for PON monitoring system using waveguide Bragg grating based PLC splitter chip,” ICOCN 2015.

B. Batagelj, “FTTH networks deployment in Slovenia,” in ICTON (2009), paper Mo.D4.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The structure diagram of the proposed PON monitoring scheme with remote coding.
Fig. 2
Fig. 2 Schematic diagram of the detecting source: (a) wavelength chips of the transmitted pulse; (b) wavelength chips of the received coding pulse.
Fig. 3
Fig. 3 Two arrangement on PLC splitter chip corresponding to 16 branch ports: (a) the irregular arrangement; (b) the arrangement based on the above algorithm.
Fig. 4
Fig. 4 The number of coding wavelengths corresponding to each output port at the RN.
Fig. 5
Fig. 5 The amplitude of detecting pulse varies with the propagation distance in the monitoring system.
Fig. 6
Fig. 6 SNR varies the number of equidistant users with user1 in a PON with 64 users.
Fig. 7
Fig. 7 Simulation results in a PON with 8 users: (a) total received reflection signals, (b) the demultiplexed signals with 8 ONUs in the healthy links condition and (c) a break of ONU2, and (d) a break of ONU3.
Fig. 8
Fig. 8 Simulation results in a PON with 32 users: (a) the demultiplexed signals with 32 ONUs in the healthy states; (b) a break of ONU1; (c) a break of ONU16. The dotted circles around the peaks with decreased intensity show the small amplitude changes in both (b) and (c) as compared to (a), respectively. The partial enlarged graphics of pulses at about 60ns of time at λ 4 and λ 5 in (a) and (c) are given, arrowed by the dash lines.

Tables (2)

Tables Icon

Table 1 Total number of gratings between centralized and distributed structure

Tables Icon

Table 2 Component parameters for simulation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δt= 2 n g | l i l j | c
{ Γ K = λ n+1 K=1 Γ K = λ n+1 + λ (nm) K2
C= i=0 P1 ( P i ) =( P 0 )+( P 1 )++( P P1 ) = 2 P -1
{ A z + α 2 A+ i β 2 2 2 A T 2 iγ | A | 2 A=0 L α =20lg( A i A o )
SNR= μ sig 2 σ N 2 = μ sig 2 σ RIN 2 + σ B 2 + σ S 2 + σ T 2 + σ D 2
μ sig =(b+1)G α T P S e 2 α a l 1 σ B 2 =2bβ ( α T G P S ) 2 (1+ζ) e 4 α a l 1 σ S 2 =qG(1+ζ)( μ sig +G α T P S e 2 α a l 1 ) σ D 2 =q I DN B e σ T 2 = N TN B e

Metrics