Abstract

An important challenge for implementing optical signal processing functions such as wavelength conversion or wavelength data exchange (WDE) is to avoid the introduction of linear and nonlinear phase noise in the subsystem. This is particularly important for phase noise sensitive, high-order quadrature-amplitude modulation (QAM) signals. In this paper, we propose and experimentally demonstrate an optical data exchange scheme through cascaded 2nd-order nonlinearities in periodically-poled lithium niobate (PPLN) waveguides using coherent pumping. The proposed coherent pumping scheme enables noise from the coherent pumps to be cancelled out in the swapped data after WDE, even with broad linewidth distributed feedback (DFB) pump lasers. Hence, this scheme allows phase noise tolerant processing functions, enabling the low-cost implementation of WDE for high-order QAM signals. We experimentally demonstrate WDEs between 10-Gbaud 4QAM (4QAM) signal and 12.5-Gbaud 4QAM (16QAM) signal with 3.5-MHz linewidth DFB pump lasers and 50-GHz channel spacing. Error-free operation is observed for the swapped QAM signals with coherent DFB pumping whilst use of free-running DFB pumps leads to visible error floors and unrecoverable phase errors. The phase noise cancellation in the coherent pump scheme is further confirmed by study of the recovered carrier phase of the converted signals. In addition to pump phase noise, the influence of crosstalk caused by the finite extinction ratio in WDE is also experimentally investigated for the swapped QAM signals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pump-linewidth-tolerant optical wavelength conversion for high-order QAM signals using coherent pumps

Guo-Wei Lu, André Albuquerque, Benjamin J. Puttnam, Takahide Sakamoto, Miguel Drummond, Rogério Nogueira, Atsushi Kanno, Satoshi Shinada, Naoya Wada, and Tetsuya Kawanishi
Opt. Express 22(5) 5067-5075 (2014)

Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping

Guo-Wei Lu, Tianwai Bo, Takahide Sakamoto, Naokatsu Yamamoto, and Calvin Chun-Kit Chan
Opt. Express 24(20) 22573-22580 (2016)

Optical data exchange of 100-Gbit/s DQPSK signals

Jian Wang, Scott R. Nuccio, Hao Huang, Xue Wang, Jeng-Yuan Yang, and Alan E. Willner
Opt. Express 18(23) 23740-23745 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
    [Crossref]
  2. J. Wang and A. E. Willner, “Review of robust data exchange using optical nonlinearities,” Int. J. Opt. 2012, 575429 (2012).
    [Crossref]
  3. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [Crossref]
  4. C. H. Kwok, B. P. P. Kuo, and K. K. Wong, “Pulsed pump wavelength exchange for high speed signal de-multiplexing,” Opt. Express 16(15), 10894–10899 (2008).
    [Crossref] [PubMed]
  5. M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
    [Crossref]
  6. X. Xu, M. Shen, T. I. Yuk, and K. K. Y. Wong, “Optical time-slot swapping based on parametric wavelength exchange,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuC1.
  7. J. Wang, Z. Bakhtiari, O. F. Yilmaz, S. Nuccio, X. Wu, and A. E. Willner, “10 Gbit/s tributary channel exchange of 160 Gbit/ssignals using periodically poled lithium niobate,” Opt. Lett. 36(5), 630–632 (2011).
    [Crossref] [PubMed]
  8. J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett. 35(17), 2979–2981 (2010).
    [Crossref] [PubMed]
  9. G.-W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. Drummond, R. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-linewidth-tolerant optical wavelength conversion for high-order QAM signals using coherent pumps,” Opt. Express 22, 5067–5075 (2014).
    [Crossref] [PubMed]
  10. G.-W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. V. Drummond, R. N. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-linewidth-tolerant optical data exchange between 16QAM and QPSK with 50-GHz channel-spacing using coherent DFB pump, ” in European Conf. on Optical Communications (ECOC, 2014), paper P.2.18.
    [Crossref]
  11. A. P. Anthur, R. T. Watts, K. Shi, J. O. Carroll, D. Venkitesh, and L. P. Barry, “Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion,” Opt. Express 21(13), 15568–15579 (2013).
    [Crossref] [PubMed]
  12. R. W. L. Fung, H. K. Y. Cheung, B. P. P. Kuo, and K. K. Y. Wong, “Wavelength Exchange with Enhanced Extinction Ratio in Highly Nonlinear Dispersion-Shifted Fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JTuA39.
  13. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.
    [Crossref]
  14. J. Wang and Q. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett. 96(8), 081108 (2010).
    [Crossref]
  15. T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High extinction ratio optical modulator using active intensity trimmers,” in Proc. of European Conference and Exhibition on Optical Communication (ECOC, 2005), paper Th1.6.6.
    [Crossref]
  16. A. Viterbi and A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  17. I. Fatadin and S. J. Savory, “Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

2014 (1)

2013 (1)

2012 (1)

J. Wang and A. E. Willner, “Review of robust data exchange using optical nonlinearities,” Int. J. Opt. 2012, 575429 (2012).
[Crossref]

2011 (2)

J. Wang, Z. Bakhtiari, O. F. Yilmaz, S. Nuccio, X. Wu, and A. E. Willner, “10 Gbit/s tributary channel exchange of 160 Gbit/ssignals using periodically poled lithium niobate,” Opt. Lett. 36(5), 630–632 (2011).
[Crossref] [PubMed]

I. Fatadin and S. J. Savory, “Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

2010 (2)

2009 (1)

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

2008 (1)

2002 (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

2000 (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

1983 (1)

A. Viterbi and A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Albuquerque, A.

Anthur, A. P.

Bakhtiari, Z.

Barry, L. P.

Carroll, J. O.

Drummond, M.

Fatadin, I.

I. Fatadin and S. J. Savory, “Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

Kanno, A.

Kawanishi, T.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

Kuo, B. P. P.

Kwok, C. H.

Lu, G.-W.

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

Nogueira, R.

Nuccio, S.

Nuccio, S. R.

Puttnam, B. J.

Sakamoto, T.

Saruwatari, M.

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

Savory, S. J.

I. Fatadin and S. J. Savory, “Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

Shen, M.

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

Shi, K.

Shinada, S.

Sun, Q.

J. Wang and Q. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett. 96(8), 081108 (2010).
[Crossref]

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

Venkitesh, D.

Viterbi, A.

A. Viterbi and A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

A. Viterbi and A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wada, N.

Wang, J.

Watts, R. T.

Willner, A. E.

Wong, K. K.

Wong, K. K.-Y.

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

Wu, X.

Xu, X.

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

Yilmaz, O. F.

Yuk, T. I.

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. Wang and Q. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett. 96(8), 081108 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Shen, X. Xu, T. I. Yuk, and K. K.-Y. Wong, “A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange,” IEEE J. Quantum Electron. 45(11), 1309–1316 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

I. Fatadin and S. J. Savory, “Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning,” IEEE Photonics Technol. Lett. 23(17), 1246–1248 (2011).

IEEE Trans. Inf. Theory (1)

A. Viterbi and A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Int. J. Opt. (1)

J. Wang and A. E. Willner, “Review of robust data exchange using optical nonlinearities,” Int. J. Opt. 2012, 575429 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (5)

X. Xu, M. Shen, T. I. Yuk, and K. K. Y. Wong, “Optical time-slot swapping based on parametric wavelength exchange,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuC1.

R. W. L. Fung, H. K. Y. Cheung, B. P. P. Kuo, and K. K. Y. Wong, “Wavelength Exchange with Enhanced Extinction Ratio in Highly Nonlinear Dispersion-Shifted Fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JTuA39.

P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.
[Crossref]

G.-W. Lu, A. Albuquerque, B. J. Puttnam, T. Sakamoto, M. V. Drummond, R. N. Nogueira, A. Kanno, S. Shinada, N. Wada, and T. Kawanishi, “Pump-linewidth-tolerant optical data exchange between 16QAM and QPSK with 50-GHz channel-spacing using coherent DFB pump, ” in European Conf. on Optical Communications (ECOC, 2014), paper P.2.18.
[Crossref]

T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “High extinction ratio optical modulator using active intensity trimmers,” in Proc. of European Conference and Exhibition on Optical Communication (ECOC, 2005), paper Th1.6.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Operation principle of the proposed pump-phase-noise-free WDE using coherent pumping.
Fig. 2
Fig. 2 Experimental setup of WDE between QAM signals with different pumping schemes (coherent pumps or free-running pumps).
Fig. 3
Fig. 3 Variation of the ER (thin red lines) and CE (thick blue lines) with the total pump power for each OWC process, with input signal at 1552.48 nm (solid line) and at 1552.9 nm (dashed line).
Fig. 4
Fig. 4 Measured BERs of the converted signals after the wavelength exchange process when tuning the pump power (circles: the converted signal at 1552.9 nm; triangles: the converted signal at 1552.48 nm).
Fig. 5
Fig. 5 Optical spectra after PPLN without pumps (dotted blue line), with coherent pumping (solid black line), and with free-running pumping (red solid line).
Fig. 6
Fig. 6 Constellations of input signals: (a) 10-Gbaud (d) 12.5-Gbaud 4QAM; the swapped signals with coherent pumping: (b) 10-Gbaud and (e) 12.5-Gbaud 4QAM, and the swapped signals with free-running pumping: (c) 10-Gbaud and (f) 12.5-Gbaud 4QAM.
Fig. 7
Fig. 7 BER vs. OSNR of the input signals (squares: 12.5-GBaud 4QAM, circles: 10-Gbaud 4QAM) and the swapped signals with coherent pumping (crosses: 12.5-GBaud 4QAM, stars: 10-GBaud 4QAM), and the ones with free-running pumping (hexagrams: 12.5-GBaud 4QAM, diamonds: 10-GBaud 4QAM).
Fig. 8
Fig. 8 Constellations of input signals: (a) 10-Gbaud 4QAM, (e) 12.5-Gbaud 16QAM; the swapped signals with coherent pumping: (b) 4QAM, (f) 16QAM, the swapped signals with free-running pumping: (c) 4QAM, (g) 16QAM, and the converted signals with only one input signals and free-running pumping: (d) 4QAM, (h) 16QAM
Fig. 9
Fig. 9 BER vs. OSNR of the input signals (squares: 12.5-GBaud 16QAM, circles: 10-Gbaud 4QAM) and the swapped signals with coherent pumping (crosses: 12.5-GBaud 16QAM, stars: 10-GBaud 4QAM), and the ones with free-running pumping (hexagrams: 10-GBaud 4QAM).
Fig. 10
Fig. 10 Recovered carrier phase in offline DSP of the original input 4QAM signal with FL as laser source (dotted red line), the converted 4QAM signal with free-running DFB pumps (solid black line), and the converted 4QAM signal with coherent DFB pumping (dashed blue line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A (L) S1 =A (0) S1 cos(ML)+1 2 +A (0) S2 cos(ML)1 2 e i(Δ θ pump +C)
A (L) S2 =A (0) S1 cos(ML)1 2 e i(Δ θ pump +C) +A (0) S2 cos(ML)+1 2
A S1 (L)= A S2 (0) e i(Δ θ pump +C)
A S2 (L)= A S1 (0) e i(Δ θ pump +C)

Metrics