Abstract

Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micron-sized gold-nickel alloy wire integrated silica optical fibers

Chhavi Jain, Alessandro Tuniz, Klemens Reuther, Torsten Wieduwilt, Markus Rettenmayr, and Markus. A. Schmidt
Opt. Mater. Express 6(6) 1790-1799 (2016)

Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers

Mario Chemnitz, Jingxuan Wei, Chhavi Jain, Bruno P. Rodrigues, Torsten Wieduwilt, Jens Kobelke, Lothar Wondraczek, and Markus A. Schmidt
Opt. Lett. 41(15) 3519-3522 (2016)

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell
Opt. Express 19(13) 12180-12189 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
    [Crossref] [PubMed]
  2. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  3. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  5. R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  6. N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
    [Crossref] [PubMed]
  7. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref] [PubMed]
  8. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire derived all glass optical fibres,” Nat. Photonics 6(9), 629–633 (2012).
    [Crossref]
  9. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [Crossref] [PubMed]
  10. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  11. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
    [Crossref]
  12. S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
    [Crossref] [PubMed]
  13. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
    [Crossref] [PubMed]
  14. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [Crossref] [PubMed]
  15. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  16. P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
    [Crossref] [PubMed]
  17. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [Crossref]
  18. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]
  19. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
    [Crossref] [PubMed]
  20. J. Toulouse, “Optical nonlinearities in fibers: review, recent examples, and systems applications,” J. Lightwave Technol. 23(11), 3625–3641 (2005).
    [Crossref]
  21. J. E. Shelby, “Properties of alkali-alkaline earth metaphosphate glasses,” J. Non-Cryst. Solids 263-264271–276 (2000).
    [Crossref]
  22. S. Fujino and M. Kuwabara, “Dielectric properties of phosphate glasses in the region from 1 to 10 GHz,” Electroceram. Japan IX 320, 209–212 (2006).
  23. S. W. Martin, “Ionic conduction in phosphate glasses,” J. Am. Ceram. Soc. 74(8), 1767–1784 (1991).
    [Crossref]
  24. M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Phys. Rev. B 6(12), 4629–4643 (1972).
    [Crossref]
  25. J. A. Hutchinson and T. H. Allik, “Diode array pumped Er, Yb -phosphate glass laser,” Appl. Phys. Lett. 60(12), 1424–1426 (1992).
    [Crossref]
  26. D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
    [Crossref]
  27. L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005).
    [Crossref] [PubMed]
  28. T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30(20), 2748–2750 (2005).
    [Crossref] [PubMed]
  29. G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
    [Crossref] [PubMed]
  30. E. T. Y. Lee and E. R. M. Taylor, “Compositional effects on the optical and thermal properties of sodium borophosphate glasses,” J. Phys. Chem. Solids 66(1), 47–51 (2005).
    [Crossref]
  31. E. T. Y. Lee and E. R. M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater. 28(3), 200–206 (2006).
    [Crossref]
  32. R. F. Bartholomew, “Structure and properties of silver phosphate glasses — Infrared and visible spectra,” J. Non-Cryst. Solids 7(3), 221–235 (1972).
    [Crossref]
  33. I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3 based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
    [Crossref]
  34. S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
    [Crossref]
  35. I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber,” Opt. Lett. 37(13), 2499–2501 (2012).
    [Crossref] [PubMed]
  36. I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
    [Crossref] [PubMed]
  37. T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
    [Crossref]
  38. H. Takahashi, H. Nakanii, and T. Sakuma, “Effect of iodide addition on the ionic conduction in silver metaphosphate glasses,” Solid State Ion. 176(11-12), 1067–1072 (2005).
    [Crossref]
  39. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
    [Crossref]
  40. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [Crossref]
  41. S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
    [Crossref]
  42. J. A. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London; New York, 1983).
  43. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  44. J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
    [Crossref]
  45. J. E. Bertie and Z. Lan, “Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm-1,” Appl. Spectrosc. 50(8), 1047–1057 (1996).
    [Crossref]
  46. J. J. Hudgens and S. W. Martin, “Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses,” J. Am. Ceram. Soc. 76(7), 1691–1696 (1993).
    [Crossref]
  47. P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
    [Crossref]
  48. K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
    [Crossref]
  49. C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
    [Crossref]
  50. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
    [Crossref] [PubMed]
  51. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).
  52. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  53. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, Inc., 1984).

2016 (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

2015 (1)

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

2014 (4)

2013 (1)

2012 (6)

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire derived all glass optical fibres,” Nat. Photonics 6(9), 629–633 (2012).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber,” Opt. Lett. 37(13), 2499–2501 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (2)

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

2006 (3)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

S. Fujino and M. Kuwabara, “Dielectric properties of phosphate glasses in the region from 1 to 10 GHz,” Electroceram. Japan IX 320, 209–212 (2006).

E. T. Y. Lee and E. R. M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater. 28(3), 200–206 (2006).
[Crossref]

2005 (6)

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

2003 (1)

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
[Crossref]

2000 (1)

J. E. Shelby, “Properties of alkali-alkaline earth metaphosphate glasses,” J. Non-Cryst. Solids 263-264271–276 (2000).
[Crossref]

1999 (1)

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

1998 (1)

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

1996 (1)

1995 (1)

K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
[Crossref]

1993 (2)

J. J. Hudgens and S. W. Martin, “Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses,” J. Am. Ceram. Soc. 76(7), 1691–1696 (1993).
[Crossref]

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

1992 (1)

J. A. Hutchinson and T. H. Allik, “Diode array pumped Er, Yb -phosphate glass laser,” Appl. Phys. Lett. 60(12), 1424–1426 (1992).
[Crossref]

1991 (1)

S. W. Martin, “Ionic conduction in phosphate glasses,” J. Am. Ceram. Soc. 74(8), 1767–1784 (1991).
[Crossref]

1984 (1)

1982 (1)

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[Crossref]

1977 (1)

T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
[Crossref]

1972 (2)

M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Phys. Rev. B 6(12), 4629–4643 (1972).
[Crossref]

R. F. Bartholomew, “Structure and properties of silver phosphate glasses — Infrared and visible spectra,” J. Non-Cryst. Solids 7(3), 221–235 (1972).
[Crossref]

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Abouraddy, A. F.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Allik, T. H.

J. A. Hutchinson and T. H. Allik, “Diode array pumped Er, Yb -phosphate glass laser,” Appl. Phys. Lett. 60(12), 1424–1426 (1992).
[Crossref]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Badding, J. V.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Ballato, J.

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bartholomew, R. F.

R. F. Bartholomew, “Structure and properties of silver phosphate glasses — Infrared and visible spectra,” J. Non-Cryst. Solids 7(3), 221–235 (1972).
[Crossref]

Barz, A.

K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
[Crossref]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Bertie, J. E.

Birks, T.

Boivin, J. C.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Bulgakova, N. M.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

Caillaud, C.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

Chang, W.

Chen, D.

Cheng, H. Y.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

Chocat, N.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Coulombier, Q.

Couny, F.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Da, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

Daw, M.

Day, T. D.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

Dragic, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire derived all glass optical fibres,” Nat. Photonics 6(9), 629–633 (2012).
[Crossref]

Egusa, S.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Ellison, M.

Enany, A. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

Fermann, M. E.

Fink, Y.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Fleming, J. W.

Foy, P.

Fujino, S.

S. Fujino and M. Kuwabara, “Dielectric properties of phosphate glasses in the region from 1 to 10 GHz,” Electroceram. Japan IX 320, 209–212 (2006).

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
[Crossref]

Funk, D. S.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

Gopalan, V.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Granzow, N.

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Hartl, I.

Hawkins, T.

Hayden, J. S.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

He, R. R.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Healy, N.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Hu, L.

Hudgens, J. J.

J. J. Hudgens and S. W. Martin, “Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses,” J. Am. Ceram. Soc. 76(7), 1691–1696 (1993).
[Crossref]

Hutchinson, J. A.

J. A. Hutchinson and T. H. Allik, “Diode array pumped Er, Yb -phosphate glass laser,” Appl. Phys. Lett. 60(12), 1424–1426 (1992).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jain, C.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Joannopoulos, J. D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Joly, N. Y.

Kamitsos, E. I.

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3 based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

Knight, J.

Kobelke, J.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Kokuoz, B.

Konidakis, I.

Krishnamurthi, M.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Kuwabara, M.

S. Fujino and M. Kuwabara, “Dielectric properties of phosphate glasses in the region from 1 to 10 GHz,” Electroceram. Japan IX 320, 209–212 (2006).

Lan, Z.

Lee, E. T. Y.

E. T. Y. Lee and E. R. M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater. 28(3), 200–206 (2006).
[Crossref]

E. T. Y. Lee and E. R. M. Taylor, “Compositional effects on the optical and thermal properties of sodium borophosphate glasses,” J. Phys. Chem. Solids 66(1), 47–51 (2005).
[Crossref]

Lee, H. W.

Lee, K. F.

Legrand, A. P.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Leindecker, N.

Li, L.

Mafi, A.

Magistris, A.

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

Mailis, S.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

Mangan, B.

Mansingh, A.

M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Phys. Rev. B 6(12), 4629–4643 (1972).
[Crossref]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Martin, S. W.

J. J. Hudgens and S. W. Martin, “Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses,” J. Am. Ceram. Soc. 76(7), 1691–1696 (1993).
[Crossref]

S. W. Martin, “Ionic conduction in phosphate glasses,” J. Am. Ceram. Soc. 74(8), 1767–1784 (1991).
[Crossref]

McMillen, C.

Mercier, C.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Meyer, K.

K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
[Crossref]

Minami, T.

T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
[Crossref]

Moloney, J. V.

Montagne, L.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Morinaga, K.

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
[Crossref]

Morrell, M. M.

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire derived all glass optical fibres,” Nat. Photonics 6(9), 629–633 (2012).
[Crossref]

Mustarelli, P.

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

Nakanii, H.

H. Takahashi, H. Nakanii, and T. Sakuma, “Effect of iodide addition on the ionic conduction in silver metaphosphate glasses,” Solid State Ion. 176(11-12), 1067–1072 (2005).
[Crossref]

Palavit, G.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Peacock, A. C.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Peng, M.

Peyghambarian, N.

Pissadakis, S.

Polynkin, A.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Powers, D. R.

Prill Sempere, L.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Qiu, T.

Rakich, P. T.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Rao, A. M.

Reppert, J.

Rice, R. R.

Roberts, P.

Ruff, Z. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Russell, P.

Russell, P. S.

Russell, P. S. J.

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Russell, R. F.

Sabert, H.

Sakuma, T.

H. Takahashi, H. Nakanii, and T. Sakuma, “Effect of iodide addition on the ionic conduction in silver metaphosphate glasses,” Solid State Ion. 176(11-12), 1067–1072 (2005).
[Crossref]

Sanford, N. A.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

Sayer, M.

M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Phys. Rev. B 6(12), 4629–4643 (1972).
[Crossref]

Sazio, P. J. A.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scharrer, M.

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schmidt, M. A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Schülzgen, A.

Schunemann, P. G.

Scotti, S.

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

Sfihi, H.

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

Sharma, S. R.

Shelby, J. E.

J. E. Shelby, “Properties of alkali-alkaline earth metaphosphate glasses,” J. Non-Cryst. Solids 263-264271–276 (2000).
[Crossref]

Shemuly, D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Shori, R.

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Sparks, J. R.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Stachel, D.

K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
[Crossref]

Stafsudd, O.

Stolen, R.

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Stone, J.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[Crossref]

Suzuki, S.

Takahashi, H.

H. Takahashi, H. Nakanii, and T. Sakuma, “Effect of iodide addition on the ionic conduction in silver metaphosphate glasses,” Solid State Ion. 176(11-12), 1067–1072 (2005).
[Crossref]

Takuma, Y.

T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
[Crossref]

Tanaka, M.

T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
[Crossref]

Tani, F.

Tao, G.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Taylor, E. R. M.

E. T. Y. Lee and E. R. M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater. 28(3), 200–206 (2006).
[Crossref]

E. T. Y. Lee and E. R. M. Taylor, “Compositional effects on the optical and thermal properties of sodium borophosphate glasses,” J. Phys. Chem. Solids 66(1), 47–51 (2005).
[Crossref]

Temyanko, V.

Temyanko, V. L.

Tomasi, C.

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

Toulouse, J.

Toupin, P.

Toyoda, S.

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
[Crossref]

Travers, J. C.

Troles, J.

Tverjanovich, A. S.

Tyagi, H.

Tyagi, H. K.

Uebel, P.

Varsamis, C. P. E.

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3 based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

Veasey, D. L.

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Vodopyanov, K. L.

Walrafen, G. E.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[Crossref]

Wang, L.

Wang, Q.

Wang, S.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Wang, Z.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Wondraczek, K.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

Wondraczek, L.

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

Xie, S.

Yu, C.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, G.

Zhou, Q.

Zito, G.

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Wang, C. Jain, L. Wondraczek, K. Wondraczek, J. Kobelke, J. Troles, C. Caillaud, and M. A. Schmidt, “Non-Newtonian flow of an ultralow melting chalcogenide liquid in strongly confined geometry,” Appl. Phys. Lett. 106(20), 201908 (2015).
[Crossref]

J. A. Hutchinson and T. H. Allik, “Diode array pumped Er, Yb -phosphate glass laser,” Appl. Phys. Lett. 60(12), 1424–1426 (1992).
[Crossref]

D. L. Veasey, D. S. Funk, N. A. Sanford, and J. S. Hayden, “Arrays of distributed Bragg reflector waveguide lasers at 1536 nm in Yb/Er co-doped phosphate glass,” Appl. Phys. Lett. 74(6), 789–791 (1999).
[Crossref]

Appl. Spectrosc. (1)

Electroceram. Japan IX (1)

S. Fujino and M. Kuwabara, “Dielectric properties of phosphate glasses in the region from 1 to 10 GHz,” Electroceram. Japan IX 320, 209–212 (2006).

Int. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial Fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (2)

S. W. Martin, “Ionic conduction in phosphate glasses,” J. Am. Ceram. Soc. 74(8), 1767–1784 (1991).
[Crossref]

J. J. Hudgens and S. W. Martin, “Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses,” J. Am. Ceram. Soc. 76(7), 1691–1696 (1993).
[Crossref]

J. Chem. Phys. (1)

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[Crossref]

J. Electrochem. Soc. (1)

T. Minami, Y. Takuma, and M. Tanaka, “Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system,” J. Electrochem. Soc. 124(11), 1659–1662 (1977).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (9)

R. F. Bartholomew, “Structure and properties of silver phosphate glasses — Infrared and visible spectra,” J. Non-Cryst. Solids 7(3), 221–235 (1972).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3 based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. S. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[Crossref]

S. Toyoda, S. Fujino, and K. Morinaga, “Density, viscosity and surface tension of 50RO-50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts,” J. Non-Cryst. Solids 321(3), 169–174 (2003).
[Crossref]

P. Mustarelli, C. Tomasi, A. Magistris, and S. Scotti, “Water content and thermal properties of glassy silver metaphosphate - role of the preparation,” J. Non-Cryst. Solids 163(1), 97–103 (1993).
[Crossref]

K. Meyer, A. Barz, and D. Stachel, “Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses,” J. Non-Cryst. Solids 191(1-2), 71–78 (1995).
[Crossref]

C. Mercier, L. Montagne, H. Sfihi, G. Palavit, J. C. Boivin, and A. P. Legrand, “Local structure of zinc ultraphosphate glasses containing large amount of hydroxyl groups: P-31 and H-1 solid state nuclear magnetic resonance investigation,” J. Non-Cryst. Solids 224(2), 163–172 (1998).
[Crossref]

J. E. Shelby, “Properties of alkali-alkaline earth metaphosphate glasses,” J. Non-Cryst. Solids 263-264271–276 (2000).
[Crossref]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. S. J. Russell, “High index contrast all solid photonic crystal fibers by pressure assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

E. T. Y. Lee and E. R. M. Taylor, “Compositional effects on the optical and thermal properties of sodium borophosphate glasses,” J. Phys. Chem. Solids 66(1), 47–51 (2005).
[Crossref]

Nat. Mater. (2)

N. Healy, S. Mailis, N. M. Bulgakova, P. J. A. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13(12), 1122–1127 (2014).
[Crossref] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire derived all glass optical fibres,” Nat. Photonics 6(9), 629–633 (2012).
[Crossref]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Nature (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[Crossref] [PubMed]

Opt. Express (7)

P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20(27), 28409–28417 (2012).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16(23), 18675–18683 (2008).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

Opt. Lett. (9)

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[Crossref] [PubMed]

G. Zhang, Q. Zhou, C. Yu, L. Hu, and D. Chen, “Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding,” Opt. Lett. 37(12), 2259–2261 (2012).
[Crossref] [PubMed]

I. Konidakis, G. Zito, and S. Pissadakis, “Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber,” Opt. Lett. 37(13), 2499–2501 (2012).
[Crossref] [PubMed]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[Crossref] [PubMed]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

I. Konidakis, G. Zito, and S. Pissadakis, “Silver plasmon resonance effects in AgPO3/silica photonic bandgap fiber,” Opt. Lett. 39(12), 3374–3377 (2014).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005).
[Crossref] [PubMed]

T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30(20), 2748–2750 (2005).
[Crossref] [PubMed]

Opt. Mater. (1)

E. T. Y. Lee and E. R. M. Taylor, “Optical and thermal properties of binary calcium phosphate and barium phosphate glasses,” Opt. Mater. 28(3), 200–206 (2006).
[Crossref]

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Phys. Rev. B (2)

M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Phys. Rev. B 6(12), 4629–4643 (1972).
[Crossref]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[Crossref]

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Solid State Ion. (1)

H. Takahashi, H. Nakanii, and T. Sakuma, “Effect of iodide addition on the ionic conduction in silver metaphosphate glasses,” Solid State Ion. 176(11-12), 1067–1072 (2005).
[Crossref]

Other (3)

J. A. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London; New York, 1983).

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, Inc., 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of (a) the step-index fiber with metaphosphate core and silica cladding and (b) the dual-core directional mode coupler with GeO2-doped core (green) and high refractive index AgPO3 strand (red). The purple arrows indicate the input light. (c) Figure-of-merit calculation showing the minimal hole diameter which can be filled with AgPO3 glass within one hour for a length of 10 cm as function of applied pressure. Inset: a filled metaphosphate strand (diameter 2.38 µm). The grainy appearance of the metaphosphate is a result of the gold sputtered onto the sample to prevent charging. (d) Microscopic side image of a continuous AgPO3 strand (diameter: 2.4 µm) in silica.
Fig. 2
Fig. 2 Schematic of the transmission setup used for the optical characterization of the fiber samples (pol.: polarizer, λ/2: half wave plate, OBJ: objective, CCD: camera, OSA: optical spectrum analyzer, MMF: multimode fiber). The red arrows indicate the direction of the light beam. To illustrate the principle of the measurement this schematic includes the MP-MGIF structure as an example sample.
Fig. 3
Fig. 3 (a) Material refractive index of bulk AgPO3 glass measured using ellipsometry. Inset: 2D-schematic of the network of AgPO3 glass. (b) Comparison of the different Raman spectra of pure SiO2 glass (red), bulk AgPO3 glass (dark yellow) and of the filled AgPO3 strand (blue). The Raman excitation wavelength is 488 nm.
Fig. 4
Fig. 4 Modal attenuation of the fundamental core mode of the metaphosphate-silica step index fiber (diameter of the metaphosphate strand: 2.4 µm) compared to the extinction of bulk AgPO3 glass in (a) the visible and (b) the near infrared spectral domain. The insets in both figures show the extinction of the bulk metaphosphate glass in an extended spectral interval. The image in (a) is the output mode of a 7 cm long sample at a wavelength of 650 nm.
Fig. 5
Fig. 5 The optical properties of the dual core directional mode coupler consisting of one continuous metaphosphate strand and one GeO2-doped silica core. (a) Real parts of relative effective mode indices for the different modes involved (blue dashed line: fundamental GeO2-doped core mode, solid lines: higher-order AgPO3 strand modes (labels in the plot refer to the mode nomenclature in [42]). The grey dashed line refers to the situation of the effective index matching the cladding index, i.e. represents the cut-off line. (b) Spectral distribution of the transmission of the two Eigenmodes of the MP-MGIF (blue: x-pol., dark yellow: y-pol.). The colored bars indicate the spectral intervals the transmission dips coincide with the phase-matching points. Inset: definition of the coordinate system. The red dots (referring to x-pol.) highlight the wavelengths at which the MP-MGIF transmitted modes were imaged onto the camera (shown on the right handed side, 605 nm and 710 nm). The corresponding simulations of the spatial distribution of the Poynting vector (saturated linear scale) are also shown below the respective experimental image in the right (blue circles indicate the GeO2-doped core boundary).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 =1+ A UV . λ 2 λ 2 λ UV 2

Metrics