Abstract

Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave “compressing” effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy

Xuejiao Su, Weidong Zhou, and Huiguo Qian
Opt. Express 22(23) 28437-28442 (2014)

Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings

An Li, Shuai Guo, Nasrullah Wazir, Ke Chai, Liang Liang, Min Zhang, Yan Hao, Pengfei Nan, and Ruibin Liu
Opt. Express 25(22) 27559-27569 (2017)

Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu
Opt. Express 20(2) 1436-1443 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  2. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  3. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  4. J. Yu and R. Zheng, “Laser-induced plasma and laser-induced breakdown spectroscopy (LIBS) in China: the challenge and the opportunity,” Front. Phys. 7(6), 647–648 (2012).
    [Crossref]
  5. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
    [Crossref]
  6. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [Crossref]
  7. X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
    [Crossref]
  8. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
    [Crossref] [PubMed]
  9. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy,” Opt. Express 22(11), 12909–12914 (2014).
    [Crossref] [PubMed]
  10. X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
    [Crossref]
  11. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
    [Crossref] [PubMed]
  12. H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
    [Crossref]
  13. P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
    [Crossref]
  14. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011).
    [Crossref] [PubMed]
  15. X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
    [Crossref]
  16. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
    [Crossref]
  17. L. J. Radziemski and D. A. Cremers, “Laser-induced plasmas and applications,” (Marcel Dekker, Inc, 1989).
  18. S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
    [Crossref]
  19. Y. B. Zel’dovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Courier Corporation, 2002).
  20. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
    [Crossref]
  21. N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
    [Crossref]
  22. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
    [Crossref]
  23. Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
    [Crossref]

2015 (1)

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

2014 (3)

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy,” Opt. Express 22(11), 12909–12914 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

J. Yu and R. Zheng, “Laser-induced plasma and laser-induced breakdown spectroscopy (LIBS) in China: the challenge and the opportunity,” Front. Phys. 7(6), 647–648 (2012).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[Crossref]

2011 (1)

2010 (3)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[Crossref]

2009 (1)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

2007 (3)

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

2006 (1)

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

2000 (1)

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

1999 (1)

N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
[Crossref]

Arnold, N.

N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
[Crossref]

Cai, Z. X.

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Ding, H.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Diwakar, P.

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Gao, M.

Greif, R.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Gruber, J.

N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
[Crossref]

Guo, L. B.

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Hao, Z. Q.

Harilal, S.

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Hassanein, A.

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

He, X. N.

Heitz, J.

N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
[Crossref]

Hou, Z.

Hou, Z. Y.

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

Hou, Z.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Hu, W.

Jiang, D.

Kennedy, E. T.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[Crossref]

LaHaye, N.

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Li, C. M.

Li, X. W.

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

Li, X. Y.

Li, Z.

Ling, H.

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Liu, J.

Lu, J.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Lu, Y.

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Lu, Y. F.

Lui, S.

Mao, X.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Mao, X. L.

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

Miloshevsky, G.

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Navarro-González, R.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

Ni, W.

Ni, W. D.

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

O’Shay, B.

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

Raga, A. C.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

Russo, R. E.

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Shen, M.

Shen, X.

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

Sobral, H.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

Sun, J.

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Tao, Y.

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Tillack, M. S.

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Villagrán-Muniz, M.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

Wang, Z.

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy,” Opt. Express 22(11), 12909–12914 (2014).
[Crossref] [PubMed]

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013).
[Crossref] [PubMed]

Z. Wang, Z. Hou, S. Lui, D. Jiang, J. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).
[Crossref]

Wen, S.-B.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

Xie, Z. Q.

Xiong, W.

Yeates, P.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[Crossref]

Yin, H. L.

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

Yu, J.

J. Yu and R. Zheng, “Laser-induced plasma and laser-induced breakdown spectroscopy (LIBS) in China: the challenge and the opportunity,” Front. Phys. 7(6), 647–648 (2012).
[Crossref]

Yuan, T. B.

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

Yuan, T.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zeng, X. Y.

Zeng, X.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zhang, B. Y.

Zheng, R.

J. Yu and R. Zheng, “Laser-induced plasma and laser-induced breakdown spectroscopy (LIBS) in China: the challenge and the opportunity,” Front. Phys. 7(6), 647–648 (2012).
[Crossref]

Zhou, W.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zhou, Y. S.

Appl. Phys. Lett. (2)

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007).
[Crossref]

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158–3160 (2000).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

N. Arnold, J. Gruber, and J. Heitz, “Spherical expansion of the vapor plume into ambient gas: an analytical model,” Appl. Phys., A Mater. Sci. Process. 69(S1), S87–S93 (1999).
[Crossref]

Appl. Spectrosc. (2)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

Front. Phys. (2)

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

J. Yu and R. Zheng, “Laser-induced plasma and laser-induced breakdown spectroscopy (LIBS) in China: the challenge and the opportunity,” Front. Phys. 7(6), 647–648 (2012).
[Crossref]

J. Anal. At. Spectrom. (4)

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

H. L. Yin, Z. Y. Hou, T. B. Yuan, Z. Wang, W. D. Ni, and Z. Li, “Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability,” J. Anal. At. Spectrom. 30(4), 922–928 (2015).
[Crossref]

X. W. Li, Z. Wang, X. L. Mao, and R. E. Russo, “Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities,” J. Anal. At. Spectrom. 29(11), 2127–2135 (2014).
[Crossref]

J. Appl. Phys. (4)

S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[Crossref]

X. Shen, J. Sun, H. Ling, and Y. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Opt. Express (5)

Phys. Plasmas (1)

S. Harilal, G. Miloshevsky, P. Diwakar, N. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19(8), 083504 (2012).
[Crossref]

Other (2)

Y. B. Zel’dovich, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Courier Corporation, 2002).

L. J. Radziemski and D. A. Cremers, “Laser-induced plasmas and applications,” (Marcel Dekker, Inc, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Diagrams of experimental set-up. (a) shadowgraph set-up capturing the shockwave images, and (b) ICCD set-up capturing the plasma plume images.
Fig. 2
Fig. 2 Examples of images obtained from the experiment. (a) plasma image from flat surface; (b) shockwave image from flat surface; (c) plasma image from cavity confinement; (d) shockwave image from cavity confinement. Note: all images were taken with a delay time of 2000ns.
Fig. 3
Fig. 3 The evolution of shockwave and plasma plume in the flat surface case.
Fig. 4
Fig. 4 The expansion of laser-induced plasma and shockwave in the flat surface case.
Fig. 5
Fig. 5 Shockwave expansion and reflection in the cavity case.
Fig. 6
Fig. 6 The evolution of shockwave and plasma in the cavity confinement case. The shockwave reflection and plasma compression effect were observed.
Fig. 7
Fig. 7 The temporal evolutions of plasma emission intensity in flat surface case and cavity confinement case.
Fig. 8
Fig. 8 Temporal evolution of maximum plasma intensity positions (a) with cavity confinement and (b) without cavity confinement
Fig. 9
Fig. 9 Plasma core horizontal positions (a) in the cavity case and (b) flat surface case. (c) Plasma core center position evolution, and (d) absolute difference of plasma core center positions in adjacent delay times.

Tables (1)

Tables Icon

Table 1 ICCD settings at different delay times.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = ξ ( E ρ ) 1 / n + 2 t 2 / n + 2
R = R 0 ( 1 exp ( β t ) )

Metrics