Abstract

We developed a new method for retrieving the group delay dispersion of a laser from Multiphoton Intra-pulse Interference Phase Scan (MIIPS) data. The method takes into account the spectral amplitude of the laser pulse and provides a direct feedback on the accuracy of the retrieval. The main advantage of the method derives from providing sufficiently high accuracy to avoid the need for multiple experimental iterations. Another advantage is that the new method can discriminate among pulses with different spectral phase and amplitude profiles, in which MIIPS traces occupy the same position in the phase-frequency MIIPS map.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans

Alberto Comin, Richard Ciesielski, Giovanni Piredda, Kevin Donkers, and Achim Hartschuh
J. Opt. Soc. Am. B 31(5) 1118-1125 (2014)

No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS

I. Pastirk, Bojan Resan, Alan Fry, John MacKay, and M. Dantus
Opt. Express 14(20) 9537-9543 (2006)

Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses

Bingwei Xu, Jess M. Gunn, Johanna M. Dela Cruz, Vadim V. Lozovoy, and Marcos Dantus
J. Opt. Soc. Am. B 23(4) 750-759 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Rhodes, G. Steinmeyer, and R. Trebino, “Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry,” Appl. Opt. 53, D1–D11 (2014).
    [Crossref] [PubMed]
  2. D. E. Wilcox and J. P. Ogilvie, “Comparison of pulse compression methods using only a pulse shaper,” J. Opt. Soc. Am. B 31, 1544–1554 (2014).
    [Crossref]
  3. M. Pawłowska, S. Goetz, C. Dreher, M. Wurdack, E. Krauss, G. Razinskas, P. Geisler, B. Hecht, and T. Brixner, “Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective,” Opt. Express 22, 31496–31510 (2014).
    [Crossref]
  4. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
    [Crossref] [PubMed]
  5. M. Dantus, V. V. Lozovoy, and I. Pastirk, “MIIPS characterizes and corrects femtosecond pulses,” Laser Focus World 43, 101–104 (2007).
  6. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006).
    [Crossref]
  7. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006).
  8. A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
    [Crossref]
  9. R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [Crossref]
  10. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [Crossref]
  11. M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20, 18732–43 (2012).
    [Crossref] [PubMed]
  12. V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosecond laser pulses by chirp scan,” Opt. Express 21, 24879–24893 (2013).
    [Crossref] [PubMed]
  13. A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. Hartschuh, “Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans,” J. Opt. Soc. Am. B 31, 1118–1125 (2014).
    [Crossref]
  14. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
    [Crossref] [PubMed]
  15. J. C. Vaughan, T. Feurer, K. W. Stone, and K. A. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
    [Crossref] [PubMed]

2014 (4)

2013 (2)

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

V. Loriot, G. Gitzinger, and N. Forget, “Self-referenced characterization of femtosecond laser pulses by chirp scan,” Opt. Express 21, 24879–24893 (2013).
[Crossref] [PubMed]

2012 (2)

2007 (1)

M. Dantus, V. V. Lozovoy, and I. Pastirk, “MIIPS characterizes and corrects femtosecond pulses,” Laser Focus World 43, 101–104 (2007).

2006 (2)

1998 (1)

1997 (1)

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Alonso, B.

Arnold, C. L.

Bartels, R.

Brinks, D.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

Brixner, T.

Castro-Lopez, M.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

Ciesielski, R.

A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. Hartschuh, “Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans,” J. Opt. Soc. Am. B 31, 1118–1125 (2014).
[Crossref]

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

Comin, A.

A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. Hartschuh, “Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans,” J. Opt. Soc. Am. B 31, 1118–1125 (2014).
[Crossref]

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

Crespo, H.

Cruz, J. M. D.

Dantus, M.

DeLong, K. W. K.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006).

Donkers, K.

Dreher, C.

Feurer, T.

Fittinghoff, D. N.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Fordell, T.

Forget, N.

Geisler, P.

Gitzinger, G.

Goetz, S.

Gunn, J. M.

Hartschuh, A.

A. Comin, R. Ciesielski, G. Piredda, K. Donkers, and A. Hartschuh, “Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans,” J. Opt. Soc. Am. B 31, 1118–1125 (2014).
[Crossref]

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

Hecht, B.

Hildner, R.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

Iaconis, C.

Kane, D. J.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Krauss, E.

Krumbügel, M. A.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

L’Huillier, A.

Loriot, V.

Lozovoy, V. V.

Miranda, M.

Nelson, K. A.

Ogilvie, J. P.

Pastirk, I.

M. Dantus, V. V. Lozovoy, and I. Pastirk, “MIIPS characterizes and corrects femtosecond pulses,” Laser Focus World 43, 101–104 (2007).

Pawlowska, M.

Piredda, G.

Ratner, J.

Razinskas, G.

Rhodes, M.

M. Rhodes, G. Steinmeyer, and R. Trebino, “Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry,” Appl. Opt. 53, D1–D11 (2014).
[Crossref] [PubMed]

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

Richman, B. A.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006).

Silva, F.

Steinmeyer, G.

Stone, K. W.

Sweetser, J. N.

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Trebino, R.

M. Rhodes, G. Steinmeyer, and R. Trebino, “Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry,” Appl. Opt. 53, D1–D11 (2014).
[Crossref] [PubMed]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012).
[Crossref] [PubMed]

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

van Hulst, N. F.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

Vaughan, J. C.

Walmsley, I. A.

Weigand, R.

Wilcox, D. E.

Wong, T. C.

Wurdack, M.

Xu, B.

Appl. Opt. (1)

J. Opt. Soc. Am. B (3)

Laser Focus World (1)

M. Dantus, V. V. Lozovoy, and I. Pastirk, “MIIPS characterizes and corrects femtosecond pulses,” Laser Focus World 43, 101–104 (2007).

Opt. Express (4)

Opt. Lett. (2)

Proc. Natl. Acad. Sci U. S. A. (1)

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci U. S. A. 110, 18386–18390 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. K. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Other (2)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006).

A. Comin, M. Rhodes, R. Ciesielski, R. Trebino, and A. Hartschuh, “Pulse characterization in ultrafast microscopy: a comparison of frog, miips and g-miips,” in CLEO 2015 (OSA, 2015), pp. SW1H.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Simulated MIIPS measurement of two 10 fs laser pulses, centered at 400 THz. a) Spectral amplitude (gray line) and GDD (blue line) of a Gaussian pulse with GDD oscillating between 970 fs2 and 1030 fs2. b) Spectral amplitude (gray line) and GDD (black line) of a pulse with constant GDD of 1000 fs2 and modulated spectral amplitude. c,d) MIIPS maps of the pulses shown in (a) and (b), with two lines indicating the retrieved (solid red) and the correct (dashed white) GDD. For both maps the modulation parameters were: τ = 10 fs and Φ0 = 15 rad. e) Comparison of the GDD retrieved from the MIIPS maps in panels (c) and (d): The two curves are overlapped, showing that MIIPS does not distinguish between amplitude and phase variations. f) A simulated MIIPS map obtained using, as input, the GDD retrieved from the map in panel (e), together with the derived GDD (solid red line) and correct GDD (dashed white line).
Fig. 2
Fig. 2 Result of a single experimental iteration using the new method and convergence of phase-only MIIPS alghorithm for a Gaussian and a amplitude modulated pulse. Both pulses where initially linearly chirped, with a GDD of 1000 fs2. MIIPS parameters are τ = 10 fs and Φ0 = 15 rad for all cases. a,b) GDD residual after five successive MIIPS experimental iteration using phase-only MIIPS for a Gaussian (a) and an amplitude modulated pulse (b). Also shown are the GDD after a single experimental iteration using the new method (black curve) and the spectral amplitude (gray shaded area). Data are vertically offset for clarity. c,d) GDD residual for a Gaussian (c) and an amplitude modulated (d) pulse, averaged over an interval of two standard deviations around the central frequency
Fig. 3
Fig. 3 Iterative numerical analysis of the MIIPS map of an amplitude modulated 10 fs laser pulse centered at 400 THz, with constant GDD of 1000 fs2. The MIIPS parameters were τ = 10 fs and Φ0 = 15 rad. a) Error of the retrieved GDD for several iterations of the algorithm. b) Convergence of the retrieved phase (solid lines) to the true spectral phase of the input pulse (dashed black line). c) Initial MIIPS map. d) Retrieved MIIPS map after four numerical iterations. Initial and retrieved MIIPS maps are virtually identical, confirming the accuracy of the phase retrieval.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ( 2 ω ) = + | E ( ω Ω ) | | E ( ω + Ω ) | exp { i [ ϕ ( ω Ω ) + ϕ ( ω + Ω ) ] } d Ω
ϕ ( ω ) = φ ( ω ) + φ mod ( ω )
φ mod ( ω ) = Φ 0 sin ( τ ( ω ω 0 ) ψ )
E ( 2 ω ) e 2 i ϕ ( ω ) + | E ( ω Ω ) | | E ( ω + Ω ) | exp ( i d 2 ϕ ( ω ) d ω 2 Ω 2 ) d Ω
GDD ( ω ) d 2 φ ( ω ) d ω 2 = τ 2 Φ 0 sin ( τ ( ω ω 0 ) ψ )
M exp ( ω , ψ ) peak finding ( Eq . ( 5 ) ) φ ¨ 0 ( ω )
φ ¨ 0 ( ω ) d ω d ω φ 0 ( ω ) MIIPS simulation ( Eq . ( 1 ) ) M 0 sim ( ω , ψ )
M 0 sim ( ω , ψ ) peak finding ( Eq . ( 5 ) ) φ ¨ 0 feedback ( ω )
Δ φ ¨ 0 err ( ω ) = φ ¨ 0 feedback ( ω ) φ ¨ 0 ( ω )
φ ¨ 1 ( ω ) = φ ¨ 0 ( ω ) k Δ φ ¨ 0 err ( ω )
| Δ φ ¨ n err ( ω ) | = | φ ¨ n feedback ( ω ) φ ¨ 0 ( ω ) | ε GDD
min [ Δ φ ¨ ( ω ) ] = τ 2 Φ 0 N ψ

Metrics