Abstract

A simple multi-core flat fiber (MCFF) based surface plasmon resonance (SPR) sensor operating in telecommunication wavelengths is proposed for refractive index sensing. Chemically stable gold (Au) and titanium dioxide (TiO2) layers are used outside the fiber structure to realize a simple detection mechanism. The modeled sensor shows average wavelength interrogation sensitivity of 9,600 nm/RIU (Refractive Index Unit) and maximum sensitivity of 23,000 nm/RIU in the sensing range of 1.46-1.485 and 1.47-1.475, respectively. Moreover, the refractive index resolution of 4.35 × 10−6 is demonstrated. Additionally, proposed sensor had shown the maximum amplitude interrogation sensitivity of 820 RIU−1, with the sensor resolution of 1.22 × 10−5 RIU. To the best of our knowledge, the proposed sensor achieved the highest wavelength interrogation sensitivity among the reported fiber based SPR sensors. Finally we anticipate that, this novel and highly sensitive MCFF SPR sensor will find the potential applications in real time remote sensing and monitoring, ultimately enabling inexpensive and accurate chemical and biochemical analytes detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor

Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko
J. Opt. Soc. Am. B 35(11) 2816-2821 (2018)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  2. B. Gupta and R. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
    [Crossref]
  3. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [Crossref]
  4. G. Robinson, “The commercial development of planar optical biosensors,” Sensor Actuat. Biol. Chem. 29, 31–36 (1995).
  5. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
    [Crossref]
  6. Y. Rao and T. Zhu, “A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA53.
  7. Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).
  8. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  9. R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.
  10. Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).
  11. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor Actuat. Biol. Chem. 12, 213–220 (1993).
  12. Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).
  13. Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
    [Crossref]
  14. B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20(23), 25858–25866 (2012).
    [Crossref] [PubMed]
  15. D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
    [Crossref]
  16. J. N. Dash and R. Jha, “SPR biosensor based on polymer pcf coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
    [Crossref]
  17. A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
    [Crossref] [PubMed]
  18. P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  19. J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
    [Crossref]
  20. M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
    [Crossref]
  21. J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
    [Crossref]
  22. R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
    [Crossref]
  23. E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
    [Crossref]
  24. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
    [Crossref]
  25. A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.
  26. A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.
  27. F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
    [Crossref]
  28. C. Holmes, F. R. Mahamd Adikan, A. S. Webb, J. C. Gates, C. B. E. Gawith, J. K. Sahu, P. G. R. Smith, and D. N. Payne, “Evanescent field sensing in novel flat fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMJJ3.
    [Crossref]
  29. O. N. Egorova, S. L. Semjonov, A. K. Senatorov, M. Y. Salganskii, A. V. Koklyushkin, V. N. Nazarov, A. E. Korolev, D. V. Kuksenkov, M.-J. Li, and E. M. Dianov, “Multicore fiber with rectangular cross-section,” Opt. Lett. 39(7), 2168–2170 (2014).
    [Crossref] [PubMed]
  30. G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
    [Crossref]
  31. G. A. Mahdiraji, “Low-crosstalk semi-trench-assisted multicore flat fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.32.
  32. G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
    [Crossref]
  33. P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
    [Crossref] [PubMed]
  34. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref] [PubMed]
  35. B. T. Kuhlmey, B. J. Eggleton, and D. K. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]
  36. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
    [Crossref]
  37. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
    [Crossref]
  38. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [Crossref]
  39. J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. A 41(6), 416–417 (1951).
    [Crossref]
  40. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  41. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref] [PubMed]

2015 (4)

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

2014 (11)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

O. N. Egorova, S. L. Semjonov, A. K. Senatorov, M. Y. Salganskii, A. V. Koklyushkin, V. N. Nazarov, A. E. Korolev, D. V. Kuksenkov, M.-J. Li, and E. M. Dianov, “Multicore fiber with rectangular cross-section,” Opt. Lett. 39(7), 2168–2170 (2014).
[Crossref] [PubMed]

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer pcf coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

2012 (5)

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20(23), 25858–25866 (2012).
[Crossref] [PubMed]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

2010 (2)

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (3)

B. T. Kuhlmey, B. J. Eggleton, and D. K. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[Crossref]

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

B. Gupta and R. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[Crossref]

2008 (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

2007 (1)

2006 (2)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2005 (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

1995 (1)

G. Robinson, “The commercial development of planar optical biosensors,” Sensor Actuat. Biol. Chem. 29, 31–36 (1995).

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor Actuat. Biol. Chem. 12, 213–220 (1993).

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

1951 (1)

J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. A 41(6), 416–417 (1951).
[Crossref]

AbdelMalek, F.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

Ademgil, H.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Adikan, F. R.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

Aggoun, A.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

Ahmed, R.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Akowuah, E.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

Akowuah, E. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Amezcua-Correa, A.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Amirkhan, F.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

Amouzad Mahdiraji, G.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Badding, J. V.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Baril, N. F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Butt, H.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Cai, L.

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Chen, L.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Chen, Y.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

Crespi, V. H.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Dambul, K. D.

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer pcf coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Deng, Z.-q.

Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).

Dermosesian, E.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

DeVore, J. R.

J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. A 41(6), 416–417 (1951).
[Crossref]

Dianov, E. M.

Eggleton, B. J.

Egorova, O. N.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Fan, P.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Fassi Fehri, M.

Fehri, M. F.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Finlayson, C. E.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Gao, D.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Gates, J. C.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Gauvreau, B.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

Ghomeishi, M.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Giessen, H.

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Gissibl, T.

Gopalan, V.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Gorman, T.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Guan, C.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Gupta, B.

B. Gupta and R. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[Crossref]

Hassani, A.

Haxha, S.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Hayes, J. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Hnatowicz, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Holmes, C.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Jackson, B. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jha, R.

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer pcf coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor Actuat. Biol. Chem. 12, 213–220 (1993).

Kabashin, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

Kakaei, Z.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Kakaie, Z.

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

Khan, S.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Koklyushkin, A. V.

Korolev, A. E.

Kuhlmey, B. T.

Kuksenkov, D. V.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Li, J.

Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).

Li, M.-J.

Li, S.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Li, X.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Li, X.-G.

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Liu, D.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20(23), 25858–25866 (2012).
[Crossref] [PubMed]

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Mahamd Adikan, F. R.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Mahdi, M. A.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

Malinský, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Margine, E. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Meng, F.-c.

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Nazarov, V. N.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Oliver, J. V.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Otupiri, R.

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Poh, S. Y.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Pricking, S.

Qin, W.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Rifat, A. A.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sensor Actuat. Biol. Chem. 29, 31–36 (1995).

Robinson, G. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Salganskii, M. Y.

Sandoghchi, S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Sandoghchi, S. R.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Sazio, P. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Semjonov, S. L.

Senatorov, A. K.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Shawon, M. J.

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

Shuai, B.

Simpson, R. E.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Skorobogatiy, M.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

Skorobogatiy, M. A.

Slepicka, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

Svorcík, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Tan, Z.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

Verma, R.

B. Gupta and R. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[Crossref]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Vieweg, M.

Webb, A. S.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Wen, Y.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Won, D.-J.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Wu, D. C.

Wu, D. K.

Xia, L.

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Yang, Y.

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor Actuat. Biol. Chem. 12, 213–220 (1993).

Yeo, K. S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Yetisen, A. K.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Yi, C. W.

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

Yong, P. S.

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

Yu Gang, S.

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Yuan, L.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Yun, S. H.

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Zhang, F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Zhao, Z.

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Zhong, X.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Fiber Int. Opt. (1)

G. Amouzad Mahdiraji, D. M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study,” Fiber Int. Opt. 33(1-2), 85–104 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48(11), 1403–1410 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. R. M. Adikan, S. R. Sandoghchi, C. W. Yi, R. E. Simpson, M. A. Mahdi, A. S. Webb, J. C. Gates, and C. Holmes, “Direct UV written optical waveguides in flexible glass flat fiber chips,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1534–1539 (2012).
[Crossref]

IEEE Photon. J. (1)

R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A novel birefrigent photonic crystal fibre surface plasmon resonance biosensor,” IEEE Photon. J. 6(4), 1–11 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. A. Mahdiraji, F. Amirkhan, D. M. Chow, Z. Kakaie, P. S. Yong, K. D. Dambul, and F. R. M. Adikan, “Multicore flat fiber: a new fabrication technique,” IEEE Photonics Technol. Lett. 26(19), 1972–1974 (2014).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer pcf coated with conducting metal oxide,” IEEE Photonics Technol. Lett. 26(6), 595–598 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. A 41(6), 416–417 (1951).
[Crossref]

J. Sens. (1)

B. Gupta and R. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 979761 (2009).
[Crossref]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285(6), 1550–1554 (2012).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Opt. Lasers Eng. (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Lasers Eng. 58, 1–8 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[Crossref]

Plasmonics (2)

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Science (1)

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[Crossref]

Sensor Actuat. A-Phys. (1)

Y. Zhao, L. Cai, X.-G. Li, F.-c. Meng, and Z. Zhao, “Investigation of the high sensitivity RI sensor based on SMS fiber structure,” Sensor Actuat. A-Phys. 205, 186–190 (2014).

Sensor Actuat. Biol. Chem. (4)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor Actuat. Biol. Chem. 12, 213–220 (1993).

Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensor Actuat. Biol. Chem. 202, 557–567 (2014).

G. Robinson, “The commercial development of planar optical biosensors,” Sensor Actuat. Biol. Chem. 29, 31–36 (1995).

Y. Zhao, X.-G. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sensor Actuat. Biol. Chem. 221, 406–410 (2015).

Sensors (Basel) (1)

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Other (6)

R. Ahmed, A. A. Rifat, A. K. Yetisen, S. H. Yun, S. Khan, and H. Butt, “Mode-multiplexed waveguide sensor,” J. Electromagn. Wave, in press.

Y. Rao and T. Zhu, “A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA53.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene based photonic crystal fiber plasmonic biosensor,” IEEE Photon. J.in press.

A. A. Rifat, G. A. Mahdiraji, Y. G. Shee, M. J. Shawon, and F. R. M. Adikan, “A novel photonic crystal fiber biosensor based on surface plasmon resonance,” Procedia Eng. in press.

G. A. Mahdiraji, “Low-crosstalk semi-trench-assisted multicore flat fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.32.

C. Holmes, F. R. Mahamd Adikan, A. S. Webb, J. C. Gates, C. B. E. Gawith, J. K. Sahu, P. G. R. Smith, and D. N. Payne, “Evanescent field sensing in novel flat fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMJJ3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed MCFF sensor in 3D model, (b) Cross-section of 2D computational model of MCFF SPR sensor, (c) Analyte flow through sensing layer: Ligands attached with TiO2 layer, (d) Sensing response curve: reference peak (without analyte presence), shift right (red) or left (blue) with the presence of analytes.
Fig. 2
Fig. 2 Dispersion relations of the plasmonic mode (red), fundamental core mode (green), and loss spectra (blue) with the structural parameters: dc = 1.20 μm, d = 1 μm, t = 40 nm, tt = 80 nm.
Fig. 3
Fig. 3 (a) Loss spectrum with varying analyte RI (na) from 1.46 to 1.485; (b) linear fitting of the fundamental mode resonant wavelength vs. analyte RI.
Fig. 4
Fig. 4 Loss spectrum vs. wavelength with varying gold thickness from 35 to 50 nm; by setting na = 1.46, dc = 1.20 μm and tt = 80 nm.
Fig. 5
Fig. 5 Loss spectrum analysis with varying the (a) TiO2 thickness, and (b) liquid core-diameter (dc); setting na = 1.46, d = 1 μm, and t = 40 nm.
Fig. 6
Fig. 6 Dependence of the sensor amplitude sensitivity with the variation of (a) analyte RI, and (b) gold thickness at analyte RI, na = 1.460.

Tables (2)

Tables Icon

Table 1 Performance analysis with the variation of analyte RI.

Tables Icon

Table 2 Performance comparison of the reported SPR sensors.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=1+ B 1 λ 2 λ 2 C 1 B 2 λ 2 λ 2 C 2 B 3 λ 2 λ 2 C 3
ε Au = ε ω D 2 ω(ω+j γ D ) Δε. Ω L 2 ( ω 2 Ω L 2 )+j Γ L ω
n 2 =5.913+ 2.441× 10 7 ( λ 2 0.803× 10 7 )
α= 40π.Im( n eff )/( ln( 10 )λ )8.686× k 0 .Im[ n eff ]× 10 4 dB/cm 
Sensitivity, S λ [nm/RIU] = Δ λ peak / Δ n a 
R = Δ n a × Δ λ min / Δ λ peak RIU 
S A (λ)[RI U 1 ]= 1 α(λ, n a ) α(λ, n a ) n a

Metrics