Abstract

An in-fiber Mach-Zehnder interferometer was proposed and fabricated, which was based on a sandwich-like etched single mode fiber driven by only one acoustic transducer. It succeeded the feature of fast tuning and would not introduce frequency shift in the transmission spectrum. Based on it, a fast tuning dual-wavelength laser with a two-wavelength spacing around 3.5 nm was proved with a tuning range of about 3.6 nm, covering wavelengths from 1561.6 nm to 1568.9 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach–Zehnder interferometer

Na Yan, Xiaofang Han, Pengfa Chang, Ligang Huang, Feng Gao, Xuanyi Yu, Wending Zhang, Ze Zhang, Guoquan Zhang, and Jingjun Xu
Opt. Express 25(22) 27609-27615 (2017)

Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach–Zehnder interferometer

H. Ahmad, M. A. M. Salim, Saaidal R. Azzuhri, M. F. Jaddoa, and S. W. Harun
Appl. Opt. 55(4) 778-782 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
    [Crossref]
  2. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [Crossref]
  3. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper–based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011).
    [Crossref] [PubMed]
  4. B. H. Lee and U. C. Paek, “Multislit interpretation of cascaded fiber gratings,” J. Lightwave Technol. 20, 1750–1761 (2002).
    [Crossref]
  5. P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
    [Crossref]
  6. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
    [Crossref]
  7. Y. G. Han, “Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer,” J. Korean Phys. Soc. 57, 1743–1746 (2010).
    [Crossref]
  8. X. S. Liu, L. Zhan, S. Y. Luo, Y. X. Wang, and Q. S. Shen, “Individually switchable and widely tunable multi-wavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings,” J. Lightwave Technol. 29, 3319–3326 (2011).
    [Crossref]
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [Crossref] [PubMed]
  10. Y. G. Han, S. H. Kim, and S. B. Lee, “Flexibly tunable multichannel filter and bandpass filter based on long-period fiber gratings,” Opt. Express 12, 1902–1907 (2004).
    [Crossref] [PubMed]
  11. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
    [Crossref] [PubMed]
  12. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Opt. Lett. 12, 281–283 (1987).
    [Crossref] [PubMed]
  13. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20, 1247–1249 (1995).
    [Crossref] [PubMed]
  14. K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
    [Crossref]
  15. W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
    [Crossref] [PubMed]
  16. I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
    [Crossref]
  17. W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
    [Crossref]
  18. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [Crossref]
  19. Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
    [Crossref]
  20. T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
    [Crossref]

2013 (1)

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

2011 (3)

2010 (1)

Y. G. Han, “Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer,” J. Korean Phys. Soc. 57, 1743–1746 (2010).
[Crossref]

2009 (1)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

2008 (1)

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

2006 (1)

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
[Crossref]

2004 (2)

2002 (3)

B. H. Lee and U. C. Paek, “Multislit interpretation of cascaded fiber gratings,” J. Lightwave Technol. 20, 1750–1761 (2002).
[Crossref]

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

1998 (2)

X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
[Crossref]

I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
[Crossref]

1996 (2)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

1995 (1)

1987 (1)

1986 (1)

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[Crossref] [PubMed]

Blake, J. N.

Bo, F.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
[Crossref] [PubMed]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Cheng, K.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

Engan, H. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Gao, F.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
[Crossref] [PubMed]

Gu, X. J.

Han, Y. G.

Y. G. Han, “Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer,” J. Korean Phys. Soc. 57, 1743–1746 (2010).
[Crossref]

Y. G. Han, S. H. Kim, and S. B. Lee, “Flexibly tunable multichannel filter and bandpass filter based on long-period fiber gratings,” Opt. Express 12, 1902–1907 (2004).
[Crossref] [PubMed]

Hong, K. S.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

Huang, L. G.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Hwang, I. K.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
[Crossref]

Jiang, L.

Jin, T.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

Jin, W.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

Ju, J.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Kim, B. Y.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
[Crossref]

J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Opt. Lett. 12, 281–283 (1987).
[Crossref] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
[Crossref] [PubMed]

Kim, S. H.

Lee, B. H.

Lee, H. P.

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

Lee, S. B.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Li, B.

Li, Q.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

Liu, X. M.

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

Liu, X. S.

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Lu, Y.

Luo, S. Y.

Lyons, E. R.

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
[Crossref]

Monzón-Hernández, D.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
[Crossref]

Östling, D.

Paek, U. C.

Park, H. C.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

Peng, J. D.

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

Shaw, H. J.

Shen, Q. S.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

Swart, P. L.

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
[Crossref]

Tsai, H.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[Crossref] [PubMed]

Villatoro, J.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
[Crossref]

Wang, M.

Wang, S.

Wang, Y. X.

Wu, Q.

Xiao, H.

Xu, J. J.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
[Crossref] [PubMed]

Yang, J.

Yeom, D. I.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

Yun, S. H.

I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
[Crossref]

Zhan, L.

Zhang, G. Q.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
[Crossref] [PubMed]

Zhang, W. D.

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

W. D. Zhang, F. Gao, F. Bo, Q. Wu, G. Q. Zhang, and J. J. Xu, “All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer,” Opt. Lett. 36, 271–273 (2011).
[Crossref] [PubMed]

Zhao, J. H.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

Zhou, B. K.

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[Crossref]

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92, 031110 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (4)

I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber tunable comb filter with nonreciprocal transmission,” IEEE Photon. Technol. Lett. 10, 1437–1439 (1998).
[Crossref]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258–1260 (2006).
[Crossref]

Q. Li, X. M. Liu, J. D. Peng, B. K. Zhou, E. R. Lyons, and H. P. Lee, “Highly efficient acoustooptic tunable filter based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 337–339 (2002).
[Crossref]

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single-mode fiber,” IEEE Photon. Technol. Lett. 14, 1133–1135 (2002).
[Crossref]

J. Korean Phys. Soc. (1)

Y. G. Han, “Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer,” J. Korean Phys. Soc. 57, 1743–1746 (2010).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
[Crossref]

Opt. Commun. (1)

W. D. Zhang, L. G. Huang, F. Gao, F. Bo, G. Q. Zhang, and J. J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Configuration of in-fiber MZI based on a sandwich-like etched single mode fiber driven by one acoustic transducer. (a) Sandwich-like fiber driven by a single acoustic transducer. L1 and L3 regions were of the same diameter, which was smaller than that of L2 region. Effective refractive index modulation could be generated by acoustic wave only in L1 and L3 regions. (b) Mode and its frequency evolution in the region accordingly. f: frequency of optical wave. fa: frequency of acoustic wave.
Fig. 2
Fig. 2 The spectral tunability of the MZI based on the cascaded AOTFs. (a) The spectra of the MZI at different RF driving powers (solid curves) and the spectrum of a single AOTF of L1 region (dotted curve). (b) The frequency tuning spectra of the MZI.
Fig. 3
Fig. 3 Configuration of multi-wavelength laser based on the constructed MZI. EDFA: erbium doped fiber amplifier; ISO: isolator; PC: polarization controller; MZI: Mach-Zehnder interferometer that we built; OSA: optical spectrum analyzer.
Fig. 4
Fig. 4 The spectral tunability of the fast tuning dual-wavelength laser. (a) Spectrum of dual-wavelength laser output with a RF driving frequency of 0.940 MHz and EDFA pump power of 5 mW. (b) Spectra of dual-wavelength laser at different RF driving frequency. (c) Spectral tuning properties of the constructed dual-wavelength laser.
Fig. 5
Fig. 5 Spectrum of four-wavelength laser output at certain polarization state.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = ( n 01 co n 1 u cl ) Λ .

Metrics