Abstract

We report on efficient generation of second harmonic laser and single-mode vacuum squeezed light of 795 nm with periodically poled KTiOPO4 (PPKTP) crystals. We achieved 111 mW of ultra-violet (UV) light at 397.5 nm from 191 mW of fundamental light with a PPKTP crystal in a doubling cavity, corresponding to a conversion efficiency of 58.1%. Using the UV light to pump an optical parametric oscillator with a PPKTP crystal, we realized −5.6 dB of a maximum squeezing. We analyzed the pump power dependence of the squeezing level and concluded that the UV light induced losses limit the improvement of the squeezing level. The generated squeezed light has huge potential application in quantum memory and ultra-precise measurement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization squeezing at the audio frequency band for the Rubidium D1 line

Xin Wen, Yashuai Han, Jinyu Liu, Jun He, and Junmin Wang
Opt. Express 25(17) 20737-20748 (2017)

Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4

Takahito Tanimura, Daisuke Akamatsu, Yoshihiko Yokoi, Akira Furusawa, and Mikio Kozuma
Opt. Lett. 31(15) 2344-2346 (2006)

Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line

Liang Wu, Yanhong Liu, Ruijie Deng, Zhihui Yan, Xiaojun Jia, and Kunchi Peng
J. Opt. Soc. Am. B 33(11) 2296-2301 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
    [Crossref] [PubMed]
  2. J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
    [Crossref]
  3. Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
    [Crossref]
  4. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
    [Crossref] [PubMed]
  5. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
    [Crossref] [PubMed]
  6. X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
    [Crossref] [PubMed]
  7. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
    [Crossref]
  8. U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38(9), 1413–1415 (2013).
    [Crossref] [PubMed]
  9. R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2(5), 393–399 (2015).
    [Crossref]
  10. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
    [Crossref]
  11. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
    [Crossref] [PubMed]
  12. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
    [Crossref] [PubMed]
  13. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
    [Crossref] [PubMed]
  14. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17(5), 3777–3781 (2009).
    [Crossref] [PubMed]
  15. A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
    [Crossref]
  16. J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
    [Crossref]
  17. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008).
    [Crossref] [PubMed]
  18. S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
    [Crossref]
  19. T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
    [Crossref]
  20. N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
    [Crossref]
  21. Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
    [Crossref]
  22. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical magnetometry with accessible in situ optical squeezing,” Opt. Lett. 39(22), 6533–6536 (2014).
    [Crossref] [PubMed]
  23. T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
    [Crossref] [PubMed]
  24. G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
    [Crossref]
  25. A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
    [Crossref]
  26. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
    [Crossref] [PubMed]
  27. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  28. R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
  29. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
    [Crossref]
  30. F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
    [Crossref]
  31. J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).
  32. Y. S. Han, X. Wen, J. D. Bai, B. D. Yang, Y. H. Wang, J. He, and J. M. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
    [Crossref]
  33. X. Wen, Y. Han, J. Bai, J. He, Y. Wang, B. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795 nm to 397.5 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293–32300 (2014).
    [Crossref] [PubMed]
  34. Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
    [Crossref]
  35. W. Yang, Y. Wang, Y. Zheng, and H. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23(15), 19624–19633 (2015).
    [Crossref] [PubMed]
  36. X. L. Song, Z. G. Li, P. F. Zhang, G. Li, Y. C. Zhang, J. M. Wang, and T. C. Zhang, “Frequency doubling with periodically poled KTiOPO4 at the fundamental wave of cesium D2 transition,” Chin. Opt. Lett. 5, 596–598 (2007).
  37. X. Deng, J. Zhang, Y. Zhang, G. Li, and T. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4.,” Opt. Express 21(22), 25907–25911 (2013).
    [PubMed]
  38. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
    [Crossref]
  39. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
    [Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (5)

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38(9), 1413–1415 (2013).
[Crossref] [PubMed]

X. Deng, J. Zhang, Y. Zhang, G. Li, and T. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4.,” Opt. Express 21(22), 25907–25911 (2013).
[PubMed]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

2012 (2)

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

2011 (3)

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

2010 (3)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

2009 (1)

2008 (5)

E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008).
[Crossref] [PubMed]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

2007 (4)

2006 (1)

2005 (1)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).

2003 (1)

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
[Crossref]

2002 (1)

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

1999 (2)

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

1998 (1)

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

1992 (1)

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1981 (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[Crossref]

Akamatsu, D.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
[Crossref] [PubMed]

Akiba, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Andersen, U. L.

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Arikawa, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Ast, S.

Bachor, H.-A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Bai, J.

Bai, J. D.

Barreiro, S.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Bowen, W. P.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, “Quantum-enhanced micromechanical displacement sensitivity,” Opt. Lett. 38(9), 1413–1415 (2013).
[Crossref] [PubMed]

Bramati, A.

Brezger, B.

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
[Crossref]

Buchler, B. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Budker, D.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Burks, S.

Caballero, J. M.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Caves, C. M.

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[Crossref]

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Chen, Q. F.

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Chiummo, A.

Clark, J. B.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Corzo, N. V.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Coudreau, T.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Daria, V.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Deng, X.

Dowling, J. P.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Duan, Z.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Failache, H.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

Fève, J. P.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Ford, G. W.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Furusawa, A.

Georgiades, N. Ph.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Giacobino, E.

Glasser, R. T.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Glöckl, O.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Glorieux, Q.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Guibal, S.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Guidoni, L.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Guo, G. C.

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Hage, B.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Hald, J.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Han, Y.

Han, Y. S.

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Harb, C. C.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Harris, G. I.

He, J.

Hétet, G.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Hoff, U. B.

Honda, K.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Hood, C. J.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Horrom, T.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Janousek, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Jia, X.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17(5), 3777–3781 (2009).
[Crossref] [PubMed]

Kerdoncuff, H.

Kimball, D. F.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Kimble, H. J.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Knittel, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kozuma, M.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
[Crossref] [PubMed]

Lam, P. K.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Lassen, M.

Laurat, J.

Lawrie, B.

Lawrie, B. J.

Le Targat, R.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).

Lemonde, P.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).

Lett, P. D.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Lezama, A.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

Li, G.

Li, J. H.

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

Li, S. J.

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Li, Z. G.

Li, Z. X.

Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
[Crossref]

Likforman, J.-P.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Lu, H.

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
[Crossref]

Madsen, L. S.

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Marino, A. M.

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Matsko, A. B.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Mehmet, M.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Ménaert, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mikhailov, E. E.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008).
[Crossref] [PubMed]

Mitchell, M. W.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nagatsuka, S.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

Nielsen, B. M.

Novikova, I.

E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008).
[Crossref] [PubMed]

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Ortalo, J.

Otterstrom, N.

Parkins, A. S.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Peng, K.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Pilypas, K. A.

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Polzik, E. S.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Pooser, R. C.

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Ries, J.

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
[Crossref]

Rochester, S. M.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Romalis, M. V.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Schnabel, R.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Schori, C.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

Shi, B. S.

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Singh, R.

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

Song, X. L.

Sørensen, J. L.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Su, X.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Takeno, Y.

Tanimura, T.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
[Crossref] [PubMed]

Taylor, M. A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Turchette, Q. A.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

Valente, P.

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

Villa, F.

Wang, F. Y.

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Wang, H.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Wang, J.

Wang, J. M.

Wang, Y.

Wang, Y. H.

Wang, Y. J.

Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Welch, G. R.

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

Wen, X.

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

Xie, C.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Yan, Z.

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

Yang, B.

Yang, B. D.

Yang, W.

Yang, W. H.

Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
[Crossref]

Yokoi, Y.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
[Crossref] [PubMed]

Yonezawa, H.

Yukawa, M.

Zhai, C.

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Zhai, Z.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Zhang, J.

Zhang, L.

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Zhang, P. F.

Zhang, T.

Zhang, T. C.

Zhang, Y.

Zhang, Y. C.

Zheng, H. Y.

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Zheng, Y.

Zheng, Y. H.

Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
[Crossref]

Zondy, J.-J.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).

Acta Sinica Quantum Optica (1)

J. H. Li, H. Y. Zheng, L. Zhang, S. J. Li, and H. Wang, “397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal,” Acta Sinica Quantum Optica 17, 30–33 (2011).

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Chin. J. Lasers (1)

Z. X. Li, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Optimal design of single-frequency laser system for 795 nm squeezed light source,” Chin. J. Lasers 42(9), 0902002 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced grey-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

G. Hétet, O. Glöckl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Nat. Photonics (1)

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7(3), 229–233 (2013).
[Crossref]

Opt. Commun. (2)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).

F. Y. Wang, B. S. Shi, Q. F. Chen, C. Zhai, and G. C. Guo, “Efficient cw violet-light generation in a ring cavity with a periodically poled KTP,” Opt. Commun. 281(15-16), 4114–4117 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (7)

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A 84(3), 033851 (2011).
[Crossref]

T. Horrom, R. Singh, J. P. Dowling, and E. E. Mikhailov, “Quantum-enhanced magnetometer with low-frequency squeezing,” Phys. Rev. A 86(2), 023803 (2012).
[Crossref]

N. V. Corzo, Q. Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett, “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88(4), 043836 (2013).
[Crossref]

A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, “Vacuum squeezing in atomic media via self-rotation,” Phys. Rev. A 66(4), 043815 (2002).
[Crossref]

J. Ries, B. Brezger, and A. I. Lvovsky, “Experimental vacuum squeezing in rubidium vapor via self-rotation,” Phys. Rev. A 68(2), 025801 (2003).
[Crossref]

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Phys. Rev. D Part. Fields (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[Crossref]

Phys. Rev. Lett. (8)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref] [PubMed]

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett. 105(5), 053601 (2010).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104(25), 251102 (2010).
[Crossref] [PubMed]

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, and K. Peng, “Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths,” Phys. Rev. Lett. 109(25), 253604 (2012).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Proc. SPIE (1)

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Strong quantum correlations in four wave mixing in 85Rb vapor,” Proc. SPIE 7727, 772703 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of experimental setup. SHG: second harmonic generation, OPO: optical parametric oscillator, PPKTP: periodically poled KTiOPO4 crystal, ISO: optical isolator, EOM: electro-optic modulator, HWP: half-wave plate, PBS: polarization beam splitter, PD: photo detector, MC: mode-cleaner cavity.
Fig. 2
Fig. 2 The measured UV output power (blue circles) and the doubling efficiency (red squares) of the SHG cavity versus the mode-matched fundamental input. The solid lines show numerical simulation results (blue and red lines).
Fig. 3
Fig. 3 Observed parametric gain versus the violet pump power.
Fig. 4
Fig. 4 The measured beam quality factors (M2 values) and the beam profile of the local oscillator beam. (a) The case without the MC cavity. (b) The case with the MC cavity.
Fig. 5
Fig. 5 Measured quantum noise for squeezed vacuum at a UV pump power of 84 mW. (a) The shot noise level (SNL) is already normalized to zero. (b) Squeezing trace when the local phase is scanned. The setting of the spectrum analyzer is zero-span mode at an analyzing frequency of 2 MHz, the resolution bandwidth (RBW): 100 kHz, the video bandwidth (VBW): 30 Hz. Trace (a) is averaged for 20 times. The electronic noise has been subtracted from the data.
Fig. 6
Fig. 6 Power dependence of the squeezing and anti-squeezing levels. The red dots and red squares indicate the measured results. The black lines indicate the theoretical predictions, while the blue crosses ( + ) and blue tilted crosses ( × ) indicate the calculated results using the measured parametric gain and the losses at the fixed pump power.
Fig. 7
Fig. 7 Measured noise-power spectra from 200 kHz to 10 MHz. Blue line, the squeezing component; black line, the shot noise level; red line, the antisqueezing component. RBW is set to 30 kHz and VBW is 300 Hz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = 4 T 1 E n l P ω [ 2 1 T 1 ( 2 L 1 Γ η P ω E n l ) ]
G = 1 ( 1 P 2 ω / P t h ) 2
P t h = ( T 2 + L 2 ) 2 4 E n l * / α
L 2 ( P 2 ω ) = 0.00445 + 0.06767 P 2 ω
R ± = 1 ± η * ε 2 ζ ρ 4 x ( 1 x ) 2 + 4 Ω 2

Metrics