Abstract

Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser

F. Ö Ilday, J. Chen, and F. X. Kärtner
Opt. Express 13(7) 2716-2721 (2005)

95 nJ dispersion-mapped amplifier similariton fiber laser at 8.6 MHz repetition rate with linear cavity configuration

Junkai Shi, Lu Chai, Xiaowei Zhao, Bowen Liu, Minglie Hu, Yanfeng Li, and Chingyue Wang
Opt. Express 23(14) 18330-18337 (2015)

55-fs pulse generation without wave-breaking from an all-fiber Erbium-doped ring laser

Dinghuan Deng, Li Zhan, Zhaochang Gu, Yi Gu, and Yuxing Xia
Opt. Express 17(6) 4284-4288 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Wilken, T. W. Hänsch, R. Holzwarth, P. Adel, and M. Mei, “Low phase noise 250 MHz repetition rate fiber fs laser for frequency comb applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonics Applications Systems Technologies, OSA Technical Digest Series (CD), (Optical Society of America, 2007), paper CMR3.
    [Crossref]
  2. A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, “0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses,” Opt. Express 13(16), 6305–6309 (2005).
    [Crossref] [PubMed]
  3. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
    [Crossref] [PubMed]
  4. J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).
  5. L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, “High fundamental repetition rate fiber lasers operated in strong normal dispersion regime,” IEEE Photonics Technol. Lett. 21(11), 724–726 (2009).
    [Crossref]
  6. J. Peng, T. Liu, and R. Shu, “Octave-spanning fiber laser comb with 300 MHz comb spacing for optical frequency metrology,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonics Applications Systems Technologies, OSA Technical Digest Series (CD), (Optical Society of America, 2009), paper CTuK3.
    [Crossref]
  7. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
    [Crossref] [PubMed]
  8. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  9. J. L. Morse, J. W. Sickler, J. Chen, F. X. Kärtner, and E. P. Ippen, “High repetition rate, high average power, femtosecond erbium fiber ring laser,” in Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science Conference (2009), pp. 1–2.
    [Crossref]
  10. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [Crossref] [PubMed]
  11. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
    [Crossref] [PubMed]
  12. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  13. C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
    [Crossref] [PubMed]
  14. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  15. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
    [Crossref] [PubMed]
  16. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  17. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  18. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  19. B. Oktem, C. Ulgudur, and O. F. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  20. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
    [Crossref] [PubMed]
  21. A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
    [Crossref] [PubMed]
  22. W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
    [Crossref] [PubMed]
  23. V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
    [Crossref]
  24. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  25. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [Crossref]
  26. M. Olivier, V. Roy, and M. Piché, “Influence of the Raman effect on bound states of dissipative solitons,” Opt. Express 14(21), 9728–9742 (2006).
    [Crossref] [PubMed]
  27. G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001), Ch. 3.
  28. C. Aguergaray, N. G. R. Broderick, and V. Kruglov, “Rectangular similariton solutions to the nonlinear Schrodinger equation” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper JTu5A.32.
  29. V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
    [Crossref] [PubMed]
  30. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13(1), 53–55 (1988).
    [Crossref] [PubMed]
  31. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
    [Crossref]
  32. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
    [Crossref] [PubMed]
  33. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12(3), 434–439 (1995).
    [Crossref]
  34. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [Crossref] [PubMed]
  35. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton trapping in normal dispersion-fiber lasers,” Opt. Lett. 35(11), 1902–1904 (2010).
    [Crossref] [PubMed]
  36. A. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, “Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ,” Opt. Express 16(5), 3130–3135 (2008).
    [Crossref] [PubMed]
  37. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13(10), 2170 (1996).
    [Crossref]

2015 (2)

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

2013 (2)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (5)

2009 (3)

2008 (3)

A. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, “Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ,” Opt. Express 16(5), 3130–3135 (2008).
[Crossref] [PubMed]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
[Crossref]

J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).

2007 (2)

2006 (3)

2005 (1)

2004 (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2000 (1)

1996 (1)

1995 (1)

1994 (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

1993 (1)

1988 (1)

1987 (1)

Abramski, K. M.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Agrawal, G. P.

Aguergaray, C.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Akhmediev, N. N.

Amrani, F.

Andersen, D. R.

Bergman, K.

Buckley, J.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Buryak, A. V.

Byun, H.

Cai, Y.

Chen, H.

Chen, J.

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[Crossref] [PubMed]

J. L. Morse, J. W. Sickler, J. Chen, F. X. Kärtner, and E. P. Ippen, “High repetition rate, high average power, femtosecond erbium fiber ring laser,” in Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science Conference (2009), pp. 1–2.
[Crossref]

Chen, L.

Cheng, T. H.

Chong, A.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Christodoulides, D. N.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Collings, B. C.

Cundiff, S. T.

Dai, Y. H.

J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).

Fallnich, C.

Grelu, P.

Haboucha, A.

Harvey, J. D.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
[Crossref]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Headley, C.

Hundertmark, H.

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Ilday, O. F.

B. Oktem, C. Ulgudur, and O. F. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ippen, E. P.

Joseph, R. I.

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kärtner, F. X.

Knox, W. H.

Kolodziejski, L. A.

Komarov, A.

Kracht, D.

Kruglov, V. I.

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
[Crossref]

Krzempek, K.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kuhn, V.

Leblond, H.

Lecaplain, C.

Li, J.

J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).

Lin, R.

Liu, A.

Lu, C.

L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, “High fundamental repetition rate fiber lasers operated in strong normal dispersion regime,” IEEE Photonics Technol. Lett. 21(11), 724–726 (2009).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
[Crossref] [PubMed]

Ma, D.

Méchin, D.

V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
[Crossref]

Menyuk, C. R.

Morse, J. L.

J. L. Morse, J. W. Sickler, J. Chen, F. X. Kärtner, and E. P. Ippen, “High repetition rate, high average power, femtosecond erbium fiber ring laser,” in Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science Conference (2009), pp. 1–2.
[Crossref]

Motamedi, A.

Nelson, L. E.

Oktem, B.

B. Oktem, C. Ulgudur, and O. F. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Olivier, M.

Petrich, G. S.

Piché, M.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

Roy, V.

Ruan, S.

Ruehl, A.

Salhi, M.

Sanchez, F.

Sander, M. Y.

Shen, H.

Sickler, J. W.

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[Crossref] [PubMed]

J. L. Morse, J. W. Sickler, J. Chen, F. X. Kärtner, and E. P. Ippen, “High repetition rate, high average power, femtosecond erbium fiber ring laser,” in Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science Conference (2009), pp. 1–2.
[Crossref]

Sobon, G.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Soto-Crespo, J. M.

Tam, H. Y.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Tang, D. Y.

Ulgudur, C.

B. Oktem, C. Ulgudur, and O. F. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Wai, P. K. A.

L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, “High fundamental repetition rate fiber lasers operated in strong normal dispersion regime,” IEEE Photonics Technol. Lett. 21(11), 724–726 (2009).
[Crossref]

Wandt, D.

Wise, F.

Wise, F. W.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wright, L. G.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

Wu, J.

Wu, X.

Yan, P.

Zhang, H.

Zhang, Z.

Zhang, Z. G.

J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).

Zhao, L. M.

Zhou, C.

Zong, W.

Appl. Opt. (1)

Chin. Sci. Bull. (1)

J. Li, Y. H. Dai, and Z. G. Zhang, “High repetition rate passively mode-locked erbium-doped fiber laser,” Chin. Sci. Bull. 53(5), 706–708 (2008).

IEEE J. Quantum Electron. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang, “High fundamental repetition rate fiber lasers operated in strong normal dispersion regime,” IEEE Photonics Technol. Lett. 21(11), 724–726 (2009).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. Lett. (1)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

B. Oktem, C. Ulgudur, and O. F. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Express (9)

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
[Crossref] [PubMed]

A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, “0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses,” Opt. Express 13(16), 6305–6309 (2005).
[Crossref] [PubMed]

A. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, “Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ,” Opt. Express 16(5), 3130–3135 (2008).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

V. I. Kruglov, C. Aguergaray, and J. D. Harvey, “Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation,” Opt. Express 20(8), 8741–8754 (2012).
[Crossref] [PubMed]

M. Olivier, V. Roy, and M. Piché, “Influence of the Raman effect on bound states of dissipative solitons,” Opt. Express 14(21), 9728–9742 (2006).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited],” Opt. Express 19(23), 22496–22501 (2011).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Opt. Lett. (9)

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13(1), 53–55 (1988).
[Crossref] [PubMed]

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton trapping in normal dispersion-fiber lasers,” Opt. Lett. 35(11), 1902–1904 (2010).
[Crossref] [PubMed]

J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett. 32(11), 1566–1568 (2007).
[Crossref] [PubMed]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

Phys. Rev. A (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

V. I. Kruglov, D. Méchin, and J. D. Harvey, “Parabolic and quasi-parabolic two-component coupled propagating regimes in optical amplifiers,” Phys. Rev. A 77(3), 033846 (2008).
[Crossref]

Phys. Rev. Lett. (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

Other (5)

T. Wilken, T. W. Hänsch, R. Holzwarth, P. Adel, and M. Mei, “Low phase noise 250 MHz repetition rate fiber fs laser for frequency comb applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonics Applications Systems Technologies, OSA Technical Digest Series (CD), (Optical Society of America, 2007), paper CMR3.
[Crossref]

J. L. Morse, J. W. Sickler, J. Chen, F. X. Kärtner, and E. P. Ippen, “High repetition rate, high average power, femtosecond erbium fiber ring laser,” in Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science Conference (2009), pp. 1–2.
[Crossref]

J. Peng, T. Liu, and R. Shu, “Octave-spanning fiber laser comb with 300 MHz comb spacing for optical frequency metrology,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonics Applications Systems Technologies, OSA Technical Digest Series (CD), (Optical Society of America, 2009), paper CTuK3.
[Crossref]

G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001), Ch. 3.

C. Aguergaray, N. G. R. Broderick, and V. Kruglov, “Rectangular similariton solutions to the nonlinear Schrodinger equation” in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper JTu5A.32.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The laser cavity. The different fibers are identified by their colors: Corning SMF-28 (black), OFS EDF-150 (red) and Corning HI1060 (blue).
Fig. 2
Fig. 2 The simplified model of the cavity used for the simulations. The same color code as in Fig. 1 is used here.
Fig. 3
Fig. 3 The simulated pulses profiles (top) and spectra (bottom) directly at the output of the 50-50 coupler for different saturation energies. From blue to red Esat = 1.15, 1.30, 1.45 and 1.60 nJ and the energies of the pulses are respectively 0.79, 0.96, 1.17 and 1.46 nJ.
Fig. 4
Fig. 4 Pulse profiles and spectra after external compression in the case where the pulse energy is 1.17 nJ. The left column shows the results for compression in a linear dispersive delay line while the right column shows the results for nonlinear compression in a 132-cm length of SMF-28 fiber. On each graph, the x component of polarization is shown in blue, the y polarization component in green and the combined signal in red.
Fig. 5
Fig. 5 The evolution of the energy (E), the FWHM duration (Δt), the chirp and the spectral FWHM (Δf) of the pulse vs the position in the cavity (measured from the output coupler in the clockwise direction). The different fibers along the cavity are represented at the bottom with the same color code as in Fig. 1. The first purple line is the polarizer - waveplates system and the second one is the output coupler. On the graphs, the x- and y-polarization components are shown in blue and green. Red corresponds to their sum (when applicable). Chirp is defined as the slope of the instantaneous frequency at the pulse peak.
Fig. 6
Fig. 6 Evolution of the power and chirp profiles in the EDF: the x-polarized component (blue hue), the y-polarized component (green hue) and the combined power profile (red hue) are shown. In each case, the hue goes from darker to lighter colors as the profile are shown at 25 cm, 35 cm, 45 cm, 55 cm and 65 cm of propagation in the EDF.
Fig. 7
Fig. 7 Experimental results (blue) in comparison with simulations results (red) for the case of the 1.17-nJ pulse. On top, the pulse train measured with a 3 GHz photodiode. The left column shows the autocorrelation trace and the optical spectrum (log scale covering from 10-5 up to 102) after a propagation of 30 cm in the external SMF-28 fiber, i.e. almost directly at the output of the laser. The right column shows the autocorrelation trace and the optical spectrum (log scale covering from 10-5 up to 102) after 132 cm of propagation in the same fiber, i.e. near the point of maximum compression.

Metrics