Abstract

Experiments for measuring gas diffusion through porous alumina ceramics are described. With the gas in scattering media absorption spectroscopy (GASMAS) technique, gaseous oxygen signals are measured continuously during the gas diffusion process. It is experimentally demonstrated that the time-dependence of the transient oxygen signal is described by an exponential curve. Moreover, the effect on gas diffusion of material porosity and whether water is present or not is also experimentally investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a compact multipass oxygen sensor used for gas diffusion studies in opaque media

Jim Larsson, Liang Mei, Patrik Lundin, Joakim Bood, and Sune Svanberg
Appl. Opt. 54(33) 9772-9778 (2015)

Non-intrusive studies of gas contents and gas diffusion in hen eggs

Ying Li, Wansha Li, Lingna Hu, Katarina Svanberg, and Sune Svanberg
Biomed. Opt. Express 10(1) 83-91 (2019)

Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel

Lin Yang, Gabriel Somesfalean, and Sailing He
Opt. Express 22(3) 2584-2594 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
    [Crossref]
  2. S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
    [Crossref] [PubMed]
  3. D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
    [Crossref]
  4. Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).
  5. T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
    [Crossref]
  6. Y. Nakano and J. W. Evans, “Monte Carlo simulation of diffusion of gases in a porous solid: Calculations for a new class of solids,” J. Chem. Phys. 78(5), 2568–2572 (1983).
    [Crossref]
  7. Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 036304 (2002).
    [Crossref] [PubMed]
  8. J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
    [Crossref]
  9. Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
    [Crossref]
  10. J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
    [Crossref]
  11. R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
    [Crossref] [PubMed]
  12. L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
    [Crossref] [PubMed]
  13. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
    [Crossref] [PubMed]
  14. T. Svensson and Z. Shen, “Laser spectroscopy of gas confined in nanoporous media,” Appl. Phys. Lett. 96(2), 021107 (2010).
    [Crossref]
  15. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express 18(16), 16460–16473 (2010).
    [Crossref] [PubMed]
  16. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
    [Crossref] [PubMed]
  17. L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
    [Crossref]
  18. J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
    [Crossref]
  19. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
    [Crossref]
  20. J. Mathews and R. L. Walker, “Mathematical methods of physics,” Am. J. Phys. 33(3), 246 (1965).
    [Crossref]
  21. M. Sjöholm, L. Persson, and S. Svanberg, “Gas diffusion measurements in porous media by the use of a laser spectroscopic technique,” presented in M. Sjöholm, Laser Spectroscopic Analysis of Atmospheric Gases in Scattering Media, PhD thesis, Lund Reports on Atomic Physics LRAP-367, Lund University (2006).
  22. H. Zhang, J. Larsson, M. Sjöholm and S. Svanberg, Center of Optical and Electromagnetic Research, South China Normal University, University City Campus, Guangzhou, are preparing a manuscript to be called “Gas diffusion in porous media studied by gas in scattering media absorption spectroscopy.”
  23. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
    [Crossref]
  24. L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
    [Crossref] [PubMed]
  25. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14(8), 3641–3653 (2006).
    [Crossref] [PubMed]
  26. L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47(12), 2028–2034 (2008).
    [Crossref] [PubMed]
  27. H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
    [Crossref] [PubMed]
  28. L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode laser absorption spectroscopy for studies of gas exchange in fruits,” Lasers Opt. Engineering 44(7), 687–698 (2006).
    [Crossref]
  29. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
    [Crossref]
  30. G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
    [Crossref]
  31. Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
    [Crossref]
  32. L. Cao and R. He, “Gas diffusion in fractal porous media,” Combust. Sci. Technol. 182(7), 822–841 (2010).
    [Crossref]
  33. M. A. Liang and H. E. Rong, “Unsteady state gas diffusion in fractal porous media,” Ciesc Journal 64(9), 3139–3144 (2013).
  34. R. J. Millington, “Gas diffusion in porous media,” Science 130(3367), 100–102 (1959).
    [Crossref] [PubMed]
  35. S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
    [Crossref] [PubMed]
  36. Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
    [Crossref]
  37. M. Aachib, M. Aubertin, and M. Mbonimpa, “Laboratory measurements and predictive equations for gas diffusion coefficient of unsaturated soils,” in 55th Canadian Geotechnical Conference and 3rd Joint IAH-CNC and CGS Groundwater Specialty Conference (Niagara Falls, Ontario,2002), pp. 163–172.
  38. M. A. Aubertin and K. Authier, “Evaluation of diffusive gas flux through covers with a GCL,” Geotextiles Geomembranes 18(2-4), 215–233 (2000).
    [Crossref]

2015 (1)

2014 (3)

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
[Crossref]

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

2013 (4)

M. A. Liang and H. E. Rong, “Unsteady state gas diffusion in fractal porous media,” Ciesc Journal 64(9), 3139–3144 (2013).

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
[Crossref]

T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
[Crossref]

2011 (1)

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

L. Cao and R. He, “Gas diffusion in fractal porous media,” Combust. Sci. Technol. 182(7), 822–841 (2010).
[Crossref]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express 18(16), 16460–16473 (2010).
[Crossref] [PubMed]

T. Svensson and Z. Shen, “Laser spectroscopy of gas confined in nanoporous media,” Appl. Phys. Lett. 96(2), 021107 (2010).
[Crossref]

2008 (5)

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47(12), 2028–2034 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

2006 (3)

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14(8), 3641–3653 (2006).
[Crossref] [PubMed]

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode laser absorption spectroscopy for studies of gas exchange in fruits,” Lasers Opt. Engineering 44(7), 687–698 (2006).
[Crossref]

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

2005 (1)

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

2004 (1)

M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
[Crossref]

2003 (1)

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

2002 (1)

Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 036304 (2002).
[Crossref] [PubMed]

2001 (2)

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

2000 (2)

M. A. Aubertin and K. Authier, “Evaluation of diffusive gas flux through covers with a GCL,” Geotextiles Geomembranes 18(2-4), 215–233 (2000).
[Crossref]

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

1999 (2)

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
[Crossref]

1983 (1)

Y. Nakano and J. W. Evans, “Monte Carlo simulation of diffusion of gases in a porous solid: Calculations for a new class of solids,” J. Chem. Phys. 78(5), 2568–2572 (1983).
[Crossref]

1981 (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

1965 (1)

J. Mathews and R. L. Walker, “Mathematical methods of physics,” Am. J. Phys. 33(3), 246 (1965).
[Crossref]

1959 (1)

R. J. Millington, “Gas diffusion in porous media,” Science 130(3367), 100–102 (1959).
[Crossref] [PubMed]

Aachib, M.

M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
[Crossref]

Adolfsson, E.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Allaire, S. E.

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

Alnis, J.

Andersson, M.

Andersson-Engels, S.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

Anlauf, R.

D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
[Crossref]

Aubertin, M.

M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
[Crossref]

Aubertin, M. A.

M. A. Aubertin and K. Authier, “Evaluation of diffusive gas flux through covers with a GCL,” Geotextiles Geomembranes 18(2-4), 215–233 (2000).
[Crossref]

Authier, K.

M. A. Aubertin and K. Authier, “Evaluation of diffusive gas flux through covers with a GCL,” Geotextiles Geomembranes 18(2-4), 215–233 (2000).
[Crossref]

Bakaoukas, N.

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

Buck, A. L.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

Cabral, A. R.

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

Cao, L.

L. Cao and R. He, “Gas diffusion in fractal porous media,” Combust. Sci. Technol. 182(7), 822–841 (2010).
[Crossref]

Evans, J. W.

Y. Nakano and J. W. Evans, “Monte Carlo simulation of diffusion of gases in a porous solid: Calculations for a new class of solids,” J. Chem. Phys. 78(5), 2568–2572 (1983).
[Crossref]

Falconer, J. L.

J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
[Crossref]

Folestad, S.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

Gao, H.

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode laser absorption spectroscopy for studies of gas exchange in fruits,” Lasers Opt. Engineering 44(7), 687–698 (2006).
[Crossref]

Gu, C. E.

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

Guo, Z.

Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 036304 (2002).
[Crossref] [PubMed]

Hao, M.

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

He, R.

L. Cao and R. He, “Gas diffusion in fractal porous media,” Combust. Sci. Technol. 182(7), 822–841 (2010).
[Crossref]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

Hoffmann, D.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

Hu, K.

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

Huang, J.

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

Hurlimann, M. D.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Iwasaki, D.

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

Jin, W.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

Johansson, J.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

Kaiser, L. G.

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

Kapolos, J.

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

Karaiskakis, G.

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

Koliadima, A.

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

Kudo, K.

T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
[Crossref]

Lafond, J. A.

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

Lange, S. F.

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

Lewander, M.

Li, B.

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

Li, T.

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

Liang, M. A.

M. A. Liang and H. E. Rong, “Unsteady state gas diffusion in fractal porous media,” Ciesc Journal 64(9), 3139–3144 (2013).

Liu, G.

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

Logan, J. W.

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

Mair, R. W.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Mathews, J.

J. Mathews and R. L. Walker, “Mathematical methods of physics,” Am. J. Phys. 33(3), 246 (1965).
[Crossref]

Matsunaga, N.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

Mbonimpa, M.

M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
[Crossref]

Meersmann, T.

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

Mei, L.

L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
[Crossref] [PubMed]

L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
[Crossref]

Millington, R. J.

R. J. Millington, “Gas diffusion in porous media,” Science 130(3367), 100–102 (1959).
[Crossref] [PubMed]

Nakano, Y.

Y. Nakano and J. W. Evans, “Monte Carlo simulation of diffusion of gases in a porous solid: Calculations for a new class of solids,” J. Chem. Phys. 78(5), 2568–2572 (1983).
[Crossref]

Noble, R. D.

J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
[Crossref]

Patz, S.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Persson, L.

Pines, A.

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

Poshusta, J. C.

J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
[Crossref]

Rehrmann, P.

D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
[Crossref]

Rippe, L.

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

Rohling, J. H.

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

Rong, H. E.

M. A. Liang and H. E. Rong, “Unsteady state gas diffusion in fractal porous media,” Ciesc Journal 64(9), 3139–3144 (2013).

Sakai, G.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

Schmitz, D.

D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
[Crossref]

Schwartz, L. M.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Shen, J.

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

Shen, Z.

T. Svensson and Z. Shen, “Laser spectroscopy of gas confined in nanoporous media,” Appl. Phys. Lett. 96(2), 021107 (2010).
[Crossref]

Shimanoe, K.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

Sjöholm, M.

Somesfalean, G.

L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
[Crossref]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

Song, Y. C.

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

Suzuki, T.

T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
[Crossref]

Svanberg, K.

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47(12), 2028–2034 (2008).
[Crossref] [PubMed]

Svanberg, S.

L. Mei and S. Svanberg, “Wavelength modulation spectroscopy--Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
[Crossref] [PubMed]

L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
[Crossref]

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express 18(16), 16460–16473 (2010).
[Crossref] [PubMed]

L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47(12), 2028–2034 (2008).
[Crossref] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14(8), 3641–3653 (2006).
[Crossref] [PubMed]

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode laser absorption spectroscopy for studies of gas exchange in fruits,” Lasers Opt. Engineering 44(7), 687–698 (2006).
[Crossref]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

Svensson, T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

T. Svensson and Z. Shen, “Laser spectroscopy of gas confined in nanoporous media,” Appl. Phys. Lett. 96(2), 021107 (2010).
[Crossref]

T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express 18(16), 16460–16473 (2010).
[Crossref] [PubMed]

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

Tasaki, Y.

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

Utaka, Y.

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

van Genuchten, M. T.

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

Walker, R. L.

J. Mathews and R. L. Walker, “Mathematical methods of physics,” Am. J. Phys. 33(3), 246 (1965).
[Crossref]

Walsworth, R. L.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Wang, C.

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

Wang, S.

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

Wong, G. P.

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Wu, X.

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

Xu, C. T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

Xu, J.

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

Yamazoe, N.

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

Yang, B.

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

Yu, B.

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

Yu, M.

T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
[Crossref]

Zhang, H.

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

Zhang, L.

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

Zhao, T. S.

Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 036304 (2002).
[Crossref] [PubMed]

Zhao, Y. C.

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

Zheng, Q.

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

Zhou, J.

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

AJPS (1)

D. Schmitz, R. Anlauf, and P. Rehrmann, “Effect of air content on the oxygen diffusion coefficient of growing media,” AJPS 5(04), 955–963 (2013).
[Crossref]

Am. J. Phys. (1)

J. Mathews and R. L. Walker, “Mathematical methods of physics,” Am. J. Phys. 33(3), 246 (1965).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90(2), 345–354 (2008).
[Crossref]

Appl. Phys. Lett. (1)

T. Svensson and Z. Shen, “Laser spectroscopy of gas confined in nanoporous media,” Appl. Phys. Lett. 96(2), 021107 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Mei, G. Somesfalean, and S. Svanberg, “Light propagation in porous ceramics: porosity and optical property studies using tunable diode laser spectroscopy,” Appl. Phys., A Mater. Sci. Process. 114(2), 393–400 (2014).
[Crossref]

Ciesc Journal (1)

M. A. Liang and H. E. Rong, “Unsteady state gas diffusion in fractal porous media,” Ciesc Journal 64(9), 3139–3144 (2013).

Combust. Sci. Technol. (1)

L. Cao and R. He, “Gas diffusion in fractal porous media,” Combust. Sci. Technol. 182(7), 822–841 (2010).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

J. H. Rohling, J. Shen, C. Wang, J. Zhou, and C. E. Gu, “Photothermal deflection measurement of effective gas diffusion coefficient of a porous medium,” Eur. Phys. J. Spec. Top. 153(1), 111–113 (2008).
[Crossref]

Geotextiles Geomembranes (1)

M. A. Aubertin and K. Authier, “Evaluation of diffusive gas flux through covers with a GCL,” Geotextiles Geomembranes 18(2-4), 215–233 (2000).
[Crossref]

Heat Transf. - Asian Res. (1)

Y. Utaka, D. Iwasaki, Y. Tasaki, and S. Wang, “Measurement of effective oxygen diffusivity in microporous media containing moisture,” Heat Transf. - Asian Res. 39, 262–276 (2010).

IEEE Photonic Tech. L. (1)

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient using photonic crystal fiber,” IEEE Photonic Tech. L. 15(10), 1434–1436 (2003).
[Crossref]

J. Appl. Meteorol. (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

J. Biomed. Opt. (1)

H. Zhang, J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg, “Studies of tropical fruit ripening using three different spectroscopic techniques,” J. Biomed. Opt. 19(6), 067001 (2014).
[Crossref] [PubMed]

J. Chem. Phys. (1)

Y. Nakano and J. W. Evans, “Monte Carlo simulation of diffusion of gases in a porous solid: Calculations for a new class of solids,” J. Chem. Phys. 78(5), 2568–2572 (1983).
[Crossref]

J. Environ. Monit. (2)

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

S. E. Allaire, J. A. Lafond, A. R. Cabral, and S. F. Lange, “Measurement of gas diffusion through soils: comparison of laboratory methods,” J. Environ. Monit. 10(11), 1326–1336 (2008).
[Crossref] [PubMed]

J. Membr. Sci. (1)

J. C. Poshusta, R. D. Noble, and J. L. Falconer, “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes,” J. Membr. Sci. 160(1), 115–125 (1999).
[Crossref]

J. Phase Equilibria Diffus. (1)

J. Kapolos, N. Bakaoukas, A. Koliadima, and G. Karaiskakis, “Measurements of diffusion coefficients in porous solids by inverse gas chromatography,” J. Phase Equilibria Diffus. 26(5), 477–481 (2005).
[Crossref]

J. Power Sources (1)

T. Suzuki, K. Kudo, and M. Yu, “Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell,” J. Power Sources 222(2), 379–389 (2013).
[Crossref]

Lasers Opt. Engineering (1)

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode laser absorption spectroscopy for studies of gas exchange in fruits,” Lasers Opt. Engineering 44(7), 687–698 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Guo and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3), 036304 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107(14), 143901 (2011).
[Crossref] [PubMed]

R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann, S. Patz, L. M. Schwartz, and R. L. Walsworth, “Probing porous media with gas diffusion NMR,” Phys. Rev. Lett. 83(16), 3324–3327 (1999).
[Crossref] [PubMed]

Physica A (1)

Q. Zheng, J. Xu, B. Yang, and B. Yu, “Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network,” Physica A 392(6), 1557–1566 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. G. Kaiser, T. Meersmann, J. W. Logan, and A. Pines, “Visualization of gas flow and diffusion in porous media,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2414–2418 (2000).
[Crossref] [PubMed]

Russ. J. Phys. Chem. A (1)

Y. C. Song, M. Hao, Y. C. Zhao, and L. Zhang, “Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging,” Russ. J. Phys. Chem. A 88(12), 2265–2270 (2014).
[Crossref]

Science (1)

R. J. Millington, “Gas diffusion in porous media,” Science 130(3367), 100–102 (1959).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, “Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor,” Sens. Actuators B Chem. 80(2), 125–131 (2001).
[Crossref]

Soil Sci. Soc. Am. J. (1)

G. Liu, B. Li, K. Hu, and M. T. van Genuchten, “Simulating the gas diffusion coefficient in macropore network images: influence of soil pore morphology,” Soil Sci. Soc. Am. J. 70(4), 1252–1261 (2006).
[Crossref]

Water Air Soil Pollut. (1)

M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water Air Soil Pollut. 156(1), 163–193 (2004).
[Crossref]

Other (3)

M. Sjöholm, L. Persson, and S. Svanberg, “Gas diffusion measurements in porous media by the use of a laser spectroscopic technique,” presented in M. Sjöholm, Laser Spectroscopic Analysis of Atmospheric Gases in Scattering Media, PhD thesis, Lund Reports on Atomic Physics LRAP-367, Lund University (2006).

H. Zhang, J. Larsson, M. Sjöholm and S. Svanberg, Center of Optical and Electromagnetic Research, South China Normal University, University City Campus, Guangzhou, are preparing a manuscript to be called “Gas diffusion in porous media studied by gas in scattering media absorption spectroscopy.”

M. Aachib, M. Aubertin, and M. Mbonimpa, “Laboratory measurements and predictive equations for gas diffusion coefficient of unsaturated soils,” in 55th Canadian Geotechnical Conference and 3rd Joint IAH-CNC and CGS Groundwater Specialty Conference (Niagara Falls, Ontario,2002), pp. 163–172.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System schematics of the experimental setup for GASMAS. The system includes the measurement subsystem, the data acquisition subsystem and a data analysis system. System control and data analysis are achieved by a LabVIEW program. Abbreviations: PD (photodiode), LD (laser diode), PMT (photomultiplier tube), AO (analog output), AI (analog output), and DAQ (data acquisition).
Fig. 2
Fig. 2 (a) Raw data for molecular oxygen measured around 760 nm on a 1000 mm path through ambient air, and (b) its corresponding Fourier spectrum.
Fig. 3
Fig. 3 Measurements of the oxygen diffusion through two 25 mm ceramic samples with initially pure nitrogen and oxygen filled pores, respectively. Exponential curves were used to fit the experimental data, the blue and red curves are the fitting results for two ceramics originally filled with oxygen, while the black and green curves are the fitting results for two ceramics originally filled with nitrogen. The corresponding average time constant is about 253 s and 152 s.
Fig. 4
Fig. 4 (a) Transmitted light intensity detected in the 25 mm wet ceramic sample. (b) The measured water vapor signals in the 25 mm dry gas-filled ceramic and wet ceramic samples. The time constant for ceramic sample with dry pore space is about 331 s.
Fig. 5
Fig. 5 Measured oxygen transient L eq from two 25 mm thick ceramic samples with dry gas-filled pores and 100% humidity of gas-filled pores. The blue and red curves are the exponential fitting results for two ceramics with dry gas-filled pores, and the black and green curves are the exponential fitting results for the same ceramics but with 100% humidity. The fitting residuals are presented at the bottom of the figure.
Fig. 6
Fig. 6 Measured steady-state L eq and time constant for gas diffusion through dry and water-immersed ceramics with the thickness of 25 mm (red line), 20 mm (green line), 15 mm (blue line) and 10 mm (black line). The error bars for measurement on two ceramics of the same type are shown in the figure.
Fig. 7
Fig. 7 The measured oxygen transient L eq values from two 25 mm thick ceramic samples with the porosity of 45% and 70%, respectively. The blue and red curves are the exponential fitting results for two ceramics with the porosity 45%, and the black and green curves are the exponential fitting results for two ceramics with the porosity 70%. The fitting residuals in the bottom of the figure show some evident deviation in the time range of 0-200 s.
Fig. 8
Fig. 8 The measured steady-state L eq and time constant for gas diffusion through the 45% and 70% porosity ceramics with the thickness 25 mm (red line), 20 mm (green line), 15 mm (blue line) and10 mm (black line). The error bars for measurement on two ceramics of the same type are shown in the figure.

Tables (1)

Tables Icon

Table 1 Effective refractive index neff, reduced scattering coefficients µ's, and absorption coefficients µa for the ceramics. (Data come from [17])

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C(z,t) t = D eff 2 C(z,t) z 2 ,
{ C(z,t)| t=0 = C 0 d/2<z<d/2 C(z,t)| z=-d/2 =C(z,t)| z=d/2 = C 1 t0 ,
C(z,t)= C 1 -( C 1 - C 0 ) 4 π n=1 (1) (n1) 2n1 exp{ - D eff t ( ( 2n1 )π d ) 2 }cos ( 2n1 )πz d ,
S(t)=A n=1 B n exp( (2n1) 2 t τ 0 ),
τ 0 = d 2 D eff π 2 .
S nf (ω)=2×S(ω)×exp( ( ωn× ω m δω ) 8 ),
s ¯ nf (t)=Re{( s nf (t)-mean( s nf (t))×exp(-i β n ))},
C s × L s = C air × L eq ,
y s (t)= p 0 + p 1 ×t+ p 2 × t 2 +k× y ref (t- t 0 ),
C(z,t) t =δ(t) D eff 2 C(z,t) z 2 .
θ eq C(z,t) t = D eff 2 C(z,t) z 2 ,

Metrics