Abstract

Intracavity phase interferometry is a phase sensing technique using mode-locked lasers in which two intracavity pulses circulate. The beat frequency between the two output frequency combs is proportional to a phase shift to be measured. A laser gyro is a particular implementation of this device. The demonstrated sensitivity of 10−8 of these devices could be manipulated by applying a giant dispersion to each tooth of the comb. It is shown that the resonant dispersion of a Fabry-Perot inserted in the cavity couples to the modes of the frequency comb, resulting in a large change in phase response.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring intracavity phase changes by use of double pulses in a linear cavity

Matthew J. Bohn, Jean-Claude Diels, and Ravinder K. Jain
Opt. Lett. 22(9) 642-644 (1997)

Theoretical study of an actively mode-locked fiber laser stabilized by an intracavity Fabry-Perot etalon: linear regime

Yurij Parkhomenko, Moshe Horowitz, Curtis R. Menyuk, and Thomas F. Carruthers
J. Opt. Soc. Am. B 24(8) 1793-1802 (2007)

Analysis of a ring-laser gyroscope with intracavity phase-conjugate coupling

Michael L. Dennis and Jean-Claude M. Diels
Appl. Opt. 33(9) 1659-1672 (1994)

References

  • View by:
  • |
  • |
  • |

  1. L. Arissian and J.-C. Diels, “Intracavity phase interferometry: frequency comb sensors inside a laser cavity,” Laser Photonics Rev. 8, 799–826 (2014).
    [Crossref]
  2. L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
    [Crossref]
  3. A. Abramovici and Z. Vager, “Comparison between active- and passive-cavity interferometers,” Phys. Rev. A: At. Mol. Opt. Phys. 33, 3181–3184 (1985).
    [Crossref]
  4. A. Velten, A. Schmitt-Sody, and J.-C. Diels, “Precise intracavity phase measurement in an optical parametric oscillator with two pulses per cavity round-trip,” Opt. Lett. 35, 1181–1183 (2010).
    [Crossref] [PubMed]
  5. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 62, 055801 (2000).
    [Crossref]
  6. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
    [Crossref]
  7. D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
    [Crossref]
  8. A. Sommerfeld, “Ein Einwand gegen die Relativtheorie der Elektrodynamik und seine Beseitigung,” Physikalische Zeitschrift 8, 841 (1907).
  9. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).
  10. K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
    [Crossref]
  11. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658 (2010).
    [Crossref] [PubMed]
  12. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
    [Crossref]
  13. D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
    [Crossref]
  14. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [Crossref]
  15. Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
    [Crossref]
  16. R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
    [Crossref]
  17. L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate — fingerprints of mode-locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
    [Crossref]
  18. M. Lai, J.-C. Diels, and M. Dennis, “Nonreciprocal measurements in fs ring lasers,” Opt. Lett. 17, 1535–1537 (1992).
    [Crossref]
  19. T. M. Liu, F. X. Kartner, J. G. Fujimoto, and C.K. Sun, “Multiplying the repetition rate of passive mode-locked femtosecond lasers by an intracavity flat surface with low reflectivity,” Opt. Lett. 30, 439–441 (2005).
    [Crossref] [PubMed]
  20. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).

2016 (1)

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

2014 (2)

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

L. Arissian and J.-C. Diels, “Intracavity phase interferometry: frequency comb sensors inside a laser cavity,” Laser Photonics Rev. 8, 799–826 (2014).
[Crossref]

2010 (2)

2009 (2)

L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate — fingerprints of mode-locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
[Crossref]

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

2008 (1)

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

2007 (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

2005 (1)

2000 (2)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 62, 055801 (2000).
[Crossref]

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

1999 (3)

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[Crossref]

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

1992 (1)

1985 (1)

A. Abramovici and Z. Vager, “Comparison between active- and passive-cavity interferometers,” Phys. Rev. A: At. Mol. Opt. Phys. 33, 3181–3184 (1985).
[Crossref]

1907 (1)

A. Sommerfeld, “Ein Einwand gegen die Relativtheorie der Elektrodynamik und seine Beseitigung,” Physikalische Zeitschrift 8, 841 (1907).

Abramovici, A.

A. Abramovici and Z. Vager, “Comparison between active- and passive-cavity interferometers,” Phys. Rev. A: At. Mol. Opt. Phys. 33, 3181–3184 (1985).
[Crossref]

Arissian, L.

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

L. Arissian and J.-C. Diels, “Intracavity phase interferometry: frequency comb sensors inside a laser cavity,” Laser Photonics Rev. 8, 799–826 (2014).
[Crossref]

L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate — fingerprints of mode-locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).

Chang, H.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

Dennis, M.

Diels, J.-C.

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

L. Arissian and J.-C. Diels, “Intracavity phase interferometry: frequency comb sensors inside a laser cavity,” Laser Photonics Rev. 8, 799–826 (2014).
[Crossref]

A. Velten, A. Schmitt-Sody, and J.-C. Diels, “Precise intracavity phase measurement in an optical parametric oscillator with two pulses per cavity round-trip,” Opt. Lett. 35, 1181–1183 (2010).
[Crossref] [PubMed]

L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate — fingerprints of mode-locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
[Crossref]

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

M. Lai, J.-C. Diels, and M. Dennis, “Nonreciprocal measurements in fs ring lasers,” Opt. Lett. 17, 1535–1537 (1992).
[Crossref]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).

Dube, P.

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

Fujimoto, J. G.

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Hall, J. L.

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

Hänsch, T.W.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hendrie, J.

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

Holzwarth, R.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[Crossref]

Jasapara, J.

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

Jones, R. J.

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

Kartner, F. X.

Lai, M.

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 62, 055801 (2000).
[Crossref]

Liu, T. M.

Ma, L.-S.

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

Masuda, K.

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Myneni, K

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

Myneni, K.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

Odutola, J. A.

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 62, 055801 (2000).
[Crossref]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[Crossref]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

Rudolph, W.

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658 (2010).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Salit, M.

Schmitt-Sody, A.

Shahriar, M. S.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18, 17658 (2010).
[Crossref] [PubMed]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Smith, D. D.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

Sommerfeld, A.

A. Sommerfeld, “Ein Einwand gegen die Relativtheorie der Elektrodynamik und seine Beseitigung,” Physikalische Zeitschrift 8, 841 (1907).

Sun, C.K.

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881–883 (1999).
[Crossref]

Vager, Z.

A. Abramovici and Z. Vager, “Comparison between active- and passive-cavity interferometers,” Phys. Rev. A: At. Mol. Opt. Phys. 33, 3181–3184 (1985).
[Crossref]

Velten, A.

Wang, Y.

Yablon, J.

Ye, J.

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

Yum, H. N.

J. Opt. Soc. Am. B: Opt. Phys. (1)

L.-S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity,” J. Opt. Soc. Am. B: Opt. Phys. 16, 2255 (1999).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (2)

L. Arissian and J.-C. Diels, “Investigation of carrier to envelope phase and repetition rate — fingerprints of mode-locked laser cavities,” J. Phys. B: At. Mol. Opt. Phys. 42, 183001 (2009).
[Crossref]

K. Masuda, J. Hendrie, J.-C. Diels, and L. Arissian, “Envelope, group and phase velocities in a nested frequency comb,” J. Phys. B: At. Mol. Opt. Phys. 49, 085402 (2016).
[Crossref]

Laser Photonics Rev. (1)

L. Arissian and J.-C. Diels, “Intracavity phase interferometry: frequency comb sensors inside a laser cavity,” Laser Photonics Rev. 8, 799–826 (2014).
[Crossref]

Opt. Commun. (1)

R. J. Jones, J.-C. Diels, J. Jasapara, and W. Rudolph, “Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity,” Opt. Commun. 175, 409–418 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A: At. Mol. Opt. Phys. (6)

A. Abramovici and Z. Vager, “Comparison between active- and passive-cavity interferometers,” Phys. Rev. A: At. Mol. Opt. Phys. 33, 3181–3184 (1985).
[Crossref]

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 62, 055801 (2000).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A: At. Mol. Opt. Phys. 75, 053807 (2007).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J.-C. Diels, “Dispersive-enhanced laser gyroscope,” Phys. Rev. A: At. Mol. Opt. Phys. 78, 053824 (2008).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A: At. Mol. Opt. Phys. 89, 053804 (2014).
[Crossref]

D. D. Smith, K Myneni, J. A. Odutola, and J.-C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A: At. Mol. Opt. Phys. 80, 011809 (2009).
[Crossref]

Phys. Rev. Lett. (1)

Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Physikalische Zeitschrift (1)

A. Sommerfeld, “Ein Einwand gegen die Relativtheorie der Elektrodynamik und seine Beseitigung,” Physikalische Zeitschrift 8, 841 (1907).

Other (2)

L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The tooth spacing of the mode-locked comb (top) is smaller than that of the Fabry-Perot (bottom). If, for instance, the tooth spacing on top is increased by decreasing the laser cavity length, there is a corresponding increase of the etalon tooth spacing in the bottom figure [10]. To the Fabry-Perot transmission peaks (in blue) correspond dispersion peaks (in green), which transfer to the laser comb modes (dashed green). The dashed black lines show the modes of the comb split due to the relative phase shift given to the two intracavity pulses (IPI response, Sagnac phase shift in the case of rotation). Each split comb sees a different index.
Fig. 2
Fig. 2 Ti:sapphire ring laser, mode-locked by the saturable absorber Hexa-Indo-Tri-Carbocyanine-Iodide (HITCI) dissolved in a jet of ethylene glycol (S). The gain medium (G) and the phase modulator (M) are located at approximately 1/4 cavity perimeter from the saturable absorber S. An output coupling is made near the other pulse crossing point, and the two output pulse trains are made to interfere on a detector Db to monitor the beat note between the two frequency combs. Instead of rotating the laser, a phase shift/round-trip is provided by a phase modulator M driven by the detector Ds at the cavity repetition rate (details in reference [1]).
Fig. 3
Fig. 3 (a) Oscilloscope trace of a high repetition pulse train created by the intracavity etalon. This picture is recorded with a fast photodiode and an 8 GHz oscilloscope. (b) Spectrum of the nested frequency comb, recorded with the same photodiode and a spectrum analyzer. The center frequency is 6.8 GHz, and the span 3 GHz. The marker is at 6.835 GHz. The baseline step is an artifact of the spectrum analyzer.
Fig. 4
Fig. 4 (a) Plot of the tooth spacing of the frequency comb corresponding to the clockwise circulating group of pulses, as a function of the tilt angle of the etalon. (b) Tooth spacing of the high frequency comb (solid line) and the low frequency comb (ring cavity repetition rate - dashed line) versus cavity perimeter.
Fig. 5
Fig. 5 (a) Slope of the beat note response as a function of Fabry-Perot angle. The slope remains at 0.8 kHz/V independently of the tilt of the Fabry-Perot. (b) Comparison of the beat note response before (solid curve) and after (dashed curve) insertion of the fabry-Perot.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = Δ ϕ τ ϕ = ω Δ P P ,
τ ϕ = τ ϕ 0 + d ψ d Ω | ω 0
Δ ω = Δ ϕ τ ϕ 0 1 + 1 τ ϕ 0 d ψ d Ω | ω 0 = Δ ω 0 1 + 1 τ ϕ 0 d ψ d Ω | ω 0
1 τ ϕ 0 d ψ d Ω | ω 0 = 1 τ ϕ 0 d v g ,
𝒯 ( Ω ) = ( 1 R ) e i k d cos θ 1 Re 2 i k d cos θ .
| d ψ d Ω | ω 0 = ( 1 + R 1 R ) 1 + tan 2 δ [ 1 + ( 1 + R 1 R ) 2 tan 2 δ ] n p d c cos θ
| d ψ d Ω | ω 0 1 + R 1 R n p d c
1 + 1 τ ϕ 0 d ψ d Ω | ω = 2.3 / 0.8 = 2.9 .
n d c τ ϕ 0 1 + R 1 R = 0.01456 × 1 + R 1 R = 1.9 .
= r + e i δ 1 r e i δ = e i ψ
ψ ( Ω ) = [ arctan ( 1 + r 1 r ) ] δ
d ψ d Ω ( 1 + r 1 r ) d δ d Ω .

Metrics