Abstract

The purpose of this study is to implement speckle reduced three-dimensional (3-D) holographic display by single phase-only spatial light modulator (SLM). The complex amplitude of hologram is transformed to pure phase value based on double-phase method. To suppress noises and higher order diffractions, we introduced a 4-f system with a filter at the frequency plane. A blazing grating is proposed to separate the complex amplitude on the frequency plane. Due to the complex modulation, the speckle noise is reduced. Both computer simulation and optical experiment have been conducted to verify the effectiveness of the method. The results indicate that this method can effectively reduce the speckle in the reconstruction in 3-D holographic display. Furthermore, the method is free of iteration which allows improving the image quality and the calculation speed at the same time.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm

Chenliang Chang, Jun Xia, Lei Yang, Wei Lei, Zhiming Yang, and Jianhong Chen
Appl. Opt. 54(23) 6994-7001 (2015)

3D dynamic holographic display by modulating complex amplitude experimentally

Xin Li, Juan Liu, Jia Jia, Yijie Pan, and Yongtian Wang
Opt. Express 21(18) 20577-20587 (2013)

Speckle reduced lensless holographic projection from phase-only computer-generated hologram

Chenliang Chang, Yijun Qi, Jun Wu, Jun Xia, and Shouping Nie
Opt. Express 25(6) 6568-6580 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref] [PubMed]
  2. E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
    [Crossref]
  3. C. Chang, J. Xia, Y. Qi, C. Yuan, and S. Nie, “Speckle-reduced holographic display by modulating complex amplitude in single-lens system,” Opt. Eng. 55(6), 063110 (2016).
    [Crossref]
  4. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54(23), 6994–7001 (2015).
    [Crossref] [PubMed]
  5. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  6. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett. 36(16), 3018–3020 (2011).
    [Crossref] [PubMed]
  7. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
    [Crossref] [PubMed]
  8. R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
    [Crossref]
  9. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [Crossref] [PubMed]
  10. J. Campos, A. Márquez, M. J. Yzuel, J. A. Davis, D. M. Cottrell, and I. Moreno, “Fully complex synthetic discriminant functions written onto phase-only modulators,” Appl. Opt. 39(32), 5965–5970 (2000).
    [Crossref] [PubMed]
  11. P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25(8), 566–568 (2000).
    [Crossref] [PubMed]
  12. S. Tao and W. Yu, “Beam shaping of complex amplitude with separate constraints on the output beam,” Opt. Express 23(2), 1052–1062 (2015).
    [Crossref] [PubMed]
  13. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16(7), 4479–4486 (2008).
    [Crossref] [PubMed]
  14. J. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. White, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in Proc. OFC/NFOEC13 (2013) paper OW4A.5.
    [Crossref]
  15. C. K. Hsueh and A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978).
    [Crossref] [PubMed]
  16. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28(15), 1359–1361 (2003).
    [Crossref] [PubMed]
  17. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28(24), 2521–2523 (2003).
    [Crossref] [PubMed]
  18. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref] [PubMed]
  19. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35(23), 4567–4576 (1996).
    [Crossref] [PubMed]
  20. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
    [Crossref] [PubMed]
  21. X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
    [Crossref] [PubMed]
  22. C. K. Hsueh and A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978).
    [Crossref] [PubMed]
  23. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24(11), 3500–3507 (2007).
    [Crossref] [PubMed]
  24. H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
    [Crossref] [PubMed]
  25. O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
    [Crossref] [PubMed]
  26. L. Yang, J. Xia, C. Chang, X. Zhang, Z. Yang, and J. Chen, “Nonlinear dynamic phase response calibration by digital holographic microscopy,” Appl. Opt. 54(25), 7799–7806 (2015).
    [Crossref] [PubMed]
  27. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46(23), 5667–5679 (2007).
    [Crossref] [PubMed]
  28. R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–250 (1971).
  29. Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1-5 (2012).
  30. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref] [PubMed]
  31. C. Chang, J. Wu, Y. Qi, C. Yuan, S. Nie, and J. Xia, “Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane,” Appl. Opt. 55(28), 7988–7996 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (3)

2014 (1)

2013 (2)

2012 (4)

2011 (3)

2008 (3)

2007 (2)

2003 (2)

2000 (2)

1999 (1)

1996 (1)

1991 (1)

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

1978 (2)

1971 (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–250 (1971).

Al-Najjar, Y.

Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1-5 (2012).

Ambs, P.

Arrizón, V.

Bernet, S.

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

Campos, J.

Carrada, R.

Chang, C.

Chen, J.

Choi, S.

Cottrell, D. M.

Davis, J. A.

Ducin, I.

Florence, J. M.

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Fütterer, G.

Gerchberg, R. W.

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–250 (1971).

Glückstad, J.

González, L. A.

Goodman, J. W.

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Häussler, R.

Hsueh, C. K.

Jesacher, A.

Jia, J.

Juday, R. D.

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Kakarenko, K.

Kanbayashi, Y.

Kato, H.

Kim, H.

Kolodziejczyk, A.

Lancis, J.

Lee, H.-S.

Lei, W.

Leister, N.

Li, G.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Li, X.

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Liu, J.

Makowski, M.

Manni, J. G.

Márquez, A.

Maurer, C.

Mendoza-Yero, O.

Millán, M. S.

Mínguez-Vega, G.

Mogensen, P. C.

Moreno, I.

Neto, L. G.

Nie, S.

Norwood, R. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Otón, J.

Pan, Y.

Pérez-Cabré, E.

Peyghambarian, N.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Qi, Y.

Reichelt, S.

Ritsch-Marte, M.

Roberge, D.

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Ruiz, U.

Sawchuk, A. A.

Schwaighofer, A.

Sheng, Y.

Siemion, A.

Song, H.

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Sung, G.

Suszek, J.

Sypek, M.

Takaki, Y.

Tao, S.

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Thomas, J.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Usukura, N.

Voorakaranam, R.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wang, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Wang, Y.

Wojnowski, D.

Won, K.

Wu, J.

Xia, J.

Yamamoto, M.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Yang, L.

Yang, Z.

Yokouchi, M.

Yu, W.

Yuan, C.

Yzuel, M. J.

Zhang, X.

Appl. Opt. (9)

C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54(23), 6994–7001 (2015).
[Crossref] [PubMed]

J. Campos, A. Márquez, M. J. Yzuel, J. A. Davis, D. M. Cottrell, and I. Moreno, “Fully complex synthetic discriminant functions written onto phase-only modulators,” Appl. Opt. 39(32), 5965–5970 (2000).
[Crossref] [PubMed]

C. K. Hsueh and A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978).
[Crossref] [PubMed]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[Crossref] [PubMed]

L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35(23), 4567–4576 (1996).
[Crossref] [PubMed]

C. K. Hsueh and A. A. Sawchuk, “Computer-generated double-phase holograms,” Appl. Opt. 17(24), 3874–3883 (1978).
[Crossref] [PubMed]

L. Yang, J. Xia, C. Chang, X. Zhang, Z. Yang, and J. Chen, “Nonlinear dynamic phase response calibration by digital holographic microscopy,” Appl. Opt. 54(25), 7799–7806 (2015).
[Crossref] [PubMed]

J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46(23), 5667–5679 (2007).
[Crossref] [PubMed]

C. Chang, J. Wu, Y. Qi, C. Yuan, S. Nie, and J. Xia, “Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane,” Appl. Opt. 55(28), 7988–7996 (2016).
[Crossref] [PubMed]

Int. J. Sci. Eng. Res. (1)

Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1-5 (2012).

J. Disp. Technol. (1)

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref] [PubMed]

Opt. Eng. (1)

C. Chang, J. Xia, Y. Qi, C. Yuan, and S. Nie, “Speckle-reduced holographic display by modulating complex amplitude in single-lens system,” Opt. Eng. 55(6), 063110 (2016).
[Crossref]

Opt. Express (8)

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
[Crossref] [PubMed]

S. Tao and W. Yu, “Beam shaping of complex amplitude with separate constraints on the output beam,” Opt. Express 23(2), 1052–1062 (2015).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16(7), 4479–4486 (2008).
[Crossref] [PubMed]

H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
[Crossref] [PubMed]

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
[Crossref] [PubMed]

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

Opt. Lett. (6)

Optik (Stuttg.) (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–250 (1971).

Proc. SPIE (1)

R. D. Juday and J. M. Florence, “Full-complex modulation with two one-parameter SLMs,” Proc. SPIE 1558, 499–504 (1991).
[Crossref]

Other (1)

J. Wei, L. Geng, D. G. Cunningham, R. V. Penty, and I. White, “100 Gigabit Ethernet transmission enabled by carrierless amplitude and phase modulation using QAM receivers,” in Proc. OFC/NFOEC13 (2013) paper OW4A.5.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (3439 KB)      Optical results of multi-plane holographic display based on proposed method

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Computer simulation results at the output plane of 4-f system. (a) Reconstructed amplitude image. (b) Reconstructed phase image. (c) CGH calculated by proposed method.
Fig. 2
Fig. 2 Schematic of optical setup.
Fig. 3
Fig. 3 Optical experimental results. (a) Reconstructed amplitude image at the output plane of 4-f system by double-phase method employing the blazing grating. (b) Reconstructed amplitude image at the output plane of 4-f system by on-axis double-phase method. (c) Reconstructed amplitude image employing the blazing grating from phase-only CGH calculated by IFTA. (d) Reconstructed amplitude image employing the blazing grating by using time averaging method in which 20 phase-only CGHs calculated by IFTA are displaying in sequence at high frame rate. ((a), (b), and (c): Exposure time: 1/8 sec; ISO speed: 400; Exposure bias: + 0.3 step (d): Exposure time: 2 sec; ISO speed: 400; Exposure bias: + 0.3 step)
Fig. 4
Fig. 4 Schematic of optical setup for multi-plane holographic display.
Fig. 5
Fig. 5 Simulation results and Optical results of multi-plane holographic display. (Exposure time: 1/8 sec; ISO speed: 800; Exposure bias: + 0.3 step) (a) and (e) Simulation and optical reconstruction at 0.1m after the output plane of 4-f system. (b) and (f) Simulation and optical reconstruction at 0.15m after the output plane of 4-f system. (c) and (g) Simulation and optical reconstruction at 0.2m after the output plane of 4-f system. (d) and (h) Simulation and optical reconstruction at 0.25m after the output plane of 4-f system (Visualization 1).
Fig. 6
Fig. 6 Simulation results and Optical results of 3-D holographic display. (a) Intensity map of model car. (b) Depth map of model car. (c) Simulation results at 0.4m after the output plane of 4-f system using the above 3-D object reconstructing method. (d) Simulation results at 0.42m after the output plane of 4-f system using the above 3-D object reconstructing method. (e) Simulation results at 0.4m after the output plane of 4-f system by double-phase complex encoding. (f) Simulation results at 0.42m after the output plane of 4-f system by double-phase complex encoding. (g) Optical reconstruction at 0.4m after the output plane of 4-f system by the proposed method. (h) Optical reconstruction at 0.42m after the output plane of 4-f system by the proposed method. (Exposure time: 1/8 sec; ISO speed: 800; Exposure bias: + 0.3 step)

Tables (1)

Tables Icon

Table 1 Image quality measurement of results in Fig. 3 by different evaluation indexes.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P ( u , v ) = r e c t ( ( u f sin α ) / ε , v / ε )
θ 1 ( x , y ) = φ ( x , y ) + cos 1 [ A ( x , y ) / A max ]
θ 2 ( x , y ) = φ ( x , y ) cos 1 [ A ( x , y ) / A max ]
M 1 ( i Δ x , j Δ y ) = { 1 ( i j a r e o d d o r e v e n ) 0 ( e l s e )
M 2 ( i Δ x , j Δ y ) = { 1 ( i j a r e o d d o r e v e n ) 0 ( e l s e )
h ( x , y ) = θ 1 ( x , y ) M 1 ( x , y ) + θ 2 ( x , y ) M 2 ( x , y )
H ( u , v ) P ( u , v ) = 1 2 F F T { U ( x , y ) }
P ( u , v ) = r e c t ( u / ε , v / ε )
h ( x , y ) = θ 1 ( x , y ) M 1 ( x , y ) + θ 2 ( x , y ) M 2 ( x , y ) + 2 π x sin α / λ
P ( u , v ) = r e c t ( ( u f sin α ) / ε , v / ε )
P S N R ( f , g ) = 10 log 10 ( 255 2 / ( 1 M N i = 1 M j = 1 N ( f i j g i j ) 2 ) )
S S I M ( f , g ) = l ( f , g ) c ( f , g ) s ( f , g )
{ l ( f , g ) = 2 μ f μ g + C 1 μ f 2 + μ g 2 + C 1 c ( f , g ) = 2 σ f σ g + C 2 σ f 2 + σ g 2 + C 2 s ( f , g ) = σ f g + C 3 σ f σ g + C 3
M S S I M ( f , g ) = 1 M N i = 1 M j = 1 N S S I M i j
C ( g ) = σ g μ g
η e = [ ( i = 1 M j = 1 N I i j 2 ) / ( i = 1 M j = 1 N O i j 2 ) ] × 100 %

Metrics