Abstract

In this paper, we demonstrate a 70 Gbit/s photonic-based wireless link at 60 GHz using a single RF carrier and a single polarization. This high capacity is achieved by using 32QAM modulation with a symbol rate of 14 GBd. We show a novel pre-equalization technique that enables usage of such very high bandwidths at 60 GHz. Our work indicates that the consumer oriented 60 GHz band could be a viable alternative to more expensive E-band or sub-THz links for high capacity photonic wireless transmission, mobile backhauling and last-mile high-capacity connections.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band

Shi Jia, Xianbin Yu, Hao Hu, Jinlong Yu, Pengyu Guan, Francesco Da Ros, Michael Galili, Toshio Morioka, and Leif K. Oxenløwe
Opt. Express 24(21) 23777-23783 (2016)

Gigabit close-proximity wireless connections supported by 60 GHz RoF links with low carrier suppression

Alexander Lebedev, Xiaodan Pang, J. J. Vegas Olmos, Søren Forchhammer, and Idelfonso Tafur Monroy
Opt. Express 21(21) 24574-24581 (2013)

100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz)

Xiaodan Pang, Antonio Caballero, Anton Dogadaev, Valeria Arlunno, Robert Borkowski, Jesper S. Pedersen, Lei Deng, Fotini Karinou, Fabien Roubeau, Darko Zibar, Xianbin Yu, and Idelfonso Tafur Monroy
Opt. Express 19(25) 24944-24949 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
    [Crossref] [PubMed]
  2. S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  5. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  6. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  7. J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
    [Crossref]
  8. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  9. T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, T. Kawanishi, K. Jitsuno, and N. Shibagaki, “31-GHz single-carrier, 44.6-Gbps photonic wireless transmission using a wide-bandwidth high power photodetector and a pre-distortion technique,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Anaheim, California, 2016), p. M3B.3.
  10. C.-H. Ho, R. Sambaraju, W. Jiang, Jr., T. H. Lu, C.-Y. Wang, H. Yang, W.-Y. Lee, C.-T. Lin, C.-C. Wei, S. Chi, and A. Ng’oma, “50-Gb/s radio-over-fiber system employing MIMO and OFDM modulation at 60 GHz,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Los Angeles, California, 2012), p. OM2B.3.
  11. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
    [Crossref] [PubMed]
  12. X. Li and J. Yu, z. Zhang, and Y. Xu, “Field trial of 80-Gb/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Los Angeles, California, 2015), p. Th5A.5.
  13. X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
    [Crossref]
  14. WiGig-Alliance, “Wireless communications white paper,” (July 2010).
  15. R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
    [Crossref]
  16. T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
    [Crossref]
  17. R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
    [Crossref]
  18. P. W. Berenguer, M. Nölle, L. Molle, T. Raman, A. Napoli, C. Schubert, and J. K. Fischer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightwave Technol. 34(8), 1739–1745 (2016).
    [Crossref]
  19. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
    [Crossref]
  20. T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.
  21. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
    [Crossref]
  22. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
    [Crossref]
  23. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [Crossref]

2016 (4)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

X. Li, J. Xiao, and J. Yu, “Long-distance wireless mm-wave signal delivery at W-band,” J. Lightwave Technol. 34(2), 661–668 (2016).
[Crossref]

P. W. Berenguer, M. Nölle, L. Molle, T. Raman, A. Napoli, C. Schubert, and J. K. Fischer, “Nonlinear digital pre-distortion of transmitter components,” J. Lightwave Technol. 34(8), 1739–1745 (2016).
[Crossref]

2015 (2)

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

2014 (1)

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

2013 (2)

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

2012 (2)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

2011 (2)

X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
[Crossref] [PubMed]

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

2010 (2)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

2009 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Ahmad, H.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Alavi, S. E.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Ambacher, O.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Amiri, I. S.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Antes, J.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Arlunno, V.

Bayvel, P.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Berenguer, P. W.

Boes, F.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Borkowski, R.

Caballero, A.

Callahan, P. T.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

Capmany, J.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Clark, T. R.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

Cordeiro, C.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Daniels, R. C.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Deng, L.

Dennis, M. L.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

Dogadaev, A.

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Fice, M. J.

Fischer, J. K.

Flores, A. B.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Freude, W.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Fujimori, T.

T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.

Gasulla, I.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Heath, R. W.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Karinou, F.

Khalily, M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Knightly, E. W.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Kobayashi, T.

T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.

Koenig, S.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Koos, C.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Li, X.

Lloret, J.

Lopez Diaz, D.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.

Molle, L.

Monroy, I. T.

Mora, J.

Murdock, J. N.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nanzer, J. A.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

Napoli, A.

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Nitsche, T.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Nölle, M.

Novack, D.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Novak, D.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pang, X.

Pedersen, J. S.

Perahia, E.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Raman, T.

Rappaport, T. S.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

Roubeau, F.

Sales, S.

Sancho, J.

Schmogrow, R.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

Schubert, C.

Seeds, A. J.

Shams, H.

Soltanian, M. R. K.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Sugihara, T.

T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.

Supa’at, A. S. M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Tessmann, A.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Waterhouse, R.

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Waterhouse, R. B.

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Widmer, J. C.

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

Xiao, J.

Yao, J.

Yu, J.

Yu, X.

Zibar, D.

Zwick, T.

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

IEEE Commun. Mag. (2)

T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE Commun. Mag. 52(12), 132–141 (2014).
[Crossref]

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 g transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

IEEE Microw. Mag. (2)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: Up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

R. Waterhouse and D. Novack, “Realizing 5G: Microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photonics Technol. Lett. 24(1), 61–63 (2012).
[Crossref]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Corrections to “Error vector magnitude as a performance measure for advanced modulation formats” [Jan 1, 2012 61–63],” IEEE Photonics Technol. Lett. 24(23), 2198 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. A. Nanzer, P. T. Callahan, M. L. Dennis, T. R. Clark, D. Novak, and R. B. Waterhouse, “Millimeter-wave wireless communication using dual-wavelength photonic signal generation and photonic upconversion,” IEEE Trans. Microw. Theory Tech. 59(12), 3522–3530 (2011).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (3)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

S. Koenig, D. Lopez Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (1)

Sci. Rep. (1)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A photonic based millimeter wave signal generation for applying in 5G access fronthaul,” Sci. Rep. 6, 19891 (2016).
[Crossref] [PubMed]

Other (5)

X. Li and J. Yu, z. Zhang, and Y. Xu, “Field trial of 80-Gb/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Los Angeles, California, 2015), p. Th5A.5.

WiGig-Alliance, “Wireless communications white paper,” (July 2010).

T. Umezawa, A. Kanno, K. Akahane, A. Matsumoto, N. Yamamoto, T. Kawanishi, K. Jitsuno, and N. Shibagaki, “31-GHz single-carrier, 44.6-Gbps photonic wireless transmission using a wide-bandwidth high power photodetector and a pre-distortion technique,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Anaheim, California, 2016), p. M3B.3.

C.-H. Ho, R. Sambaraju, W. Jiang, Jr., T. H. Lu, C.-Y. Wang, H. Yang, W.-Y. Lee, C.-T. Lin, C.-C. Wei, S. Chi, and A. Ng’oma, “50-Gb/s radio-over-fiber system employing MIMO and OFDM modulation at 60 GHz,” in Optical Fiber Communication Conference and Exhibition (OFC)(Optical Society of America, Los Angeles, California, 2012), p. OM2B.3.

T. Sugihara, T. Kobayashi, T. Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in European Conference and Exposition on Optical Communications (ECOC)(Optical Society of America2011), p. Tu6B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 – Mobile backhauling employing high capacity wireless links at 60 GHz. (a) In the central office digital signal processing (DSP) is performed on the mobile communications signals which are then transmitted as optical signals over a fiber. (b) In the remote antenna unit (RAU) signals are converted from the optical domain to the electrical domain and converted to the microwave domain. (c) Wireless transmission link and (d) the small cell base station.
Fig. 2
Fig. 2 - Experimental setup of the wireless link. (a) In the central office, an IQ modulator driven by an AWG modulates a laser (blue). The data signal is combined with a 60 GHz detuned reference laser (red) and sent to a remote location through 25 km of single-mode fiber. (b) In the remote antenna unit (RAU), a photodiode generates the RF signals which are transmitted over the wireless link (c). (d) In the receiving RAU, the signal is down-converted to an intermediate frequency, and recorded with a digital sampling oscilloscope (DSO).
Fig. 3
Fig. 3 – Photographs of the experimental setup. Figure (a) shows the RAU including photodiode (PD), V-band amplifier and 60 GHz antenna. At 60 GHz, the antenna provides 38 dBi gain while the gain of the amplifier is 23 dB. After 5 meter of wireless transmission the signal reaches the small cell that can be identified in the background and is magnified in the inset on the right hand side (b). Here, the 60 GHz signal is collected by an antenna that is identical to the one at the transmitting RAU. After boosting the signal with an amplifier with 20 dB gain at 60 GHz, it is downconverted by an RF mixer to an intermediate frequency (IF) and recorded with a digital sampling oscilloscope (DSO).
Fig. 4
Fig. 4 – Impact of the one-shot pre-equalization technique and process flow. (a) Received data signal (14 GBd 16QAM) without pre-equalization, strong power variations can be seen in the spectrum (b) Complex channel response (magnitude and phase) measured with our algorithm. (c) Received data signal (14 GBd 16QAM) with pre-equalization. A flat channel spectrum for the received signal is found after applying the complex channel response as a pre-equalization filter. (d) The pre-equalization used in this experiment allows a “single-shot” measurement of the complex response of the system under test. The process consists of the following steps: (1) A frequency comb is generated digitally and sent to an AWG, a random phase is then added to every frequency component to avoid large PAPR. (2) The comb goes through the system, following the very same path that the data will encounter. (3) The comb is acquired by an oscilloscope at the receiver, down-converted, and an FFT is performed. (4) The amplitude peaks of the spectrum are found with a specialized algorithm to recover the frequency components of the comb. (5) The random phase is removed from the results. (6) The complex response of the system is provided. It enables complex pre-equalization of a system under test
Fig. 5
Fig. 5 EVM for different symbol rates using pre-equalization. Measurements were performed with 4 dBm launch power to the 25 km fiber.
Fig. 6
Fig. 6 - Results for 16QAM at symbol rates of 10, 12 and 14 GBd for various optical input powers to the photo diode. Launch power to the fiber was 8.6 dBm.
Fig. 7
Fig. 7 – Constellation and measured BER for 14 GBd signals of (a) BPSK, (b) QPSK, (c) 16-QAM, (d) 32-QAM with more than 6 10 6 symbols.

Metrics